Return to search

Deposition of model viruses on cellulose

A bioactive paper is a paper that can detect, capture and deactivate water and airborne pathogens. In this project, we presented a model "bioactive paper" made by attaching T4 bacteriophages to a cellulose substrate. T4 bacteriophages can be genetically engineered to possess copies of cellulose-binding modules (CBM) on their capsids. This allows them to bind specifically onto cellulose surfaces. Our model surface is a thin film of regenerated cellulose made by spin coating a glass or quartz substrate with a cellulose triacetate and subsequently hydrolyzing the surface back to cellulose. We successfully demonstrated the attachment of the CBM-T4 bacteriophages onto cellulose substrates by the phage viability test. The deposition kinetics were measured using an impinging jet apparatus combined with an evanescent wave light scattering (EWLS) system. We first tested the apparatus by using amidine latex particles deposited on the cellulose at different flow rates and found them to be in a good agreement with the constant potential double-layer model. The adhesion experiments were also performed in an impinging jet apparatus in which the CBM-T4 bacteriophages and the unassembled protein complexes from a suspension of 4.08 x 10 8 PFU/mL were allowed to diffuse to the cellulose surface, The competitive diffusion kinetics were again studied by the EWLS technique. For CBM-T4, the blocking time was found to be around 58 minutes and the maximum surface number density of phages was 5.9 x 1010 per m 2. / Key phrases: bioactive paper, cellulose film, cellulose binding module, bacteriophage T4, evanescent wave light scattering, unassembled protein complex, diffusion kinetics

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.116088
Date January 2008
CreatorsLi, Zhuo, 1982-
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Chemistry.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 003135303, proquestno: AAIMR67030, Theses scanned by UMI/ProQuest.

Page generated in 0.0021 seconds