Return to search

Transition metal catalyzed alkylation and synthesis of biotin derivatives

<b>Transition Metal Catalyzed Alkylation</b> We have reported methodology for the use of methanol as an alkylation reagent using catalytic rhodium or iridium species for the formation of branched products from methyl ketones. The synthetic utility of the dialkylated products was enhanced by performing a regioselective Baeyer-Villiger oxidation which allowed access to ester products. A range of different phosphine ligands were screened, and sterically hindered and electron rich phosphine ligands were found to favour the formation of enone and methoxy adducts under an O2 atmosphere. This interrupted hydrogen borrowing reaction enabled the in situ addition of a nucleophile to give more complex products. A range of tetrasubsitituted pyridines were then synthesized from 1, 5-dicarbonyl compounds formed in the methylenation/conjugate addition sequence. Finally, deuteration experiments suggest that the reaction proceeds via a monohydride mechanism, and the possibilities for the beneficial effect of O2 were discussed. <b>Synthesis of biotin derivatives</b> The streptavidin-biotin system was chosen for the studies of protein/ligand interactions at molecular level. A series of modified biotin ligands were designed and synthesized to introduce repulsive interations with streptavidin. The protein/ligand complexes were analyzed at high resolution by X-ray crystallography.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:647572
Date January 2014
CreatorsShen, Di
ContributorsDonohoe, T. J.
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:1467ba98-846c-46e6-9620-e4639ed07e43

Page generated in 0.1187 seconds