Life history strategy suggests long lived bird species will adjust their nesting effort according to current conditions, balancing the costs of reproduction with their long-term needs for survival and future reproduction. The habitat conditions that produce these responses may differ between species, even within the same ecosystem, producing different nesting and population trends. I traced the pathway by which food availability influences the physiological condition of pre-breeding great egrets and white ibises through to reproductive measures, and the physiological condition of chicks. I focused on these two species with contrasting foraging strategies, in relation to foraging and habitat conditions to maximize the likelihood of application of these results to other wading bird species. Experimental food supplementation and physiology research on white ibis chicks demonstrated that in years with low prey availability white ibis were food limited, with increased levels of stress protein 60 and fecal corticosterone. This is the first study to demonstrate experimentally the response of stress protein 60 to changing levels of food availability. During a year with low prey availability (2007) white ibis adults and chick physiological condition was lower than that of great egrets. During the same year, fledging success was lower for both species (20% for white ibis versus 27% for great egret) but the magnitude of the decrease was particularly severe for the white ibis (76% decline versus 66% decline for the great egret). Results suggest white ibises modify their clutch size during years with poor habitat in accordance with life history traits of a long-lived species, whereas great egrets maintained their clutch size during years with poor habitat. / Increasing recession rates, hydrological reversals, and prey densities influenced white ibis, whereas great egrets were most influenced by prey densities and recession rates, with no effect of hydrological reversal. During the same year, fledging success was lower for both species (20% for white ibis versus 27% for great egret) but the magnitude of the decrease was particularly severe for the white ibis (76% decline versus 66% decline for the great egret). Results suggest white ibises modify their clutch size during years with poor habitat in accordance with life history traits of a long-lived species, whereas great egrets maintained their clutch size during years with poor habitat. Increasing recession rates, hydrological reversals, and prey densities influenced white ibis, whereas great egrets were most influenced by prey densities and recession rates, with no effect of hydrological reversals. This study is the first to make the link between landscape hydrology patterns, prey availability, and responses in wading bird nesting. These linkages provide critical insight into how species' nesting patterns could differ given the same time and spatial constraints and how that may be related to long-term nesting trends. This knowledge could ultimately lead to novel predictions about population and community patterns of wetland birds. / by Garth Herring. / Individual abstract for each chapter. / Thesis (Ph.D.)--Florida Atlantic University, 2008. / Includes bibliographical references at the end of each chapter. / Electronic reproduction. Boca Raton, FL : 2008 Mode of access: World Wide Web.
Identifer | oai:union.ndltd.org:fau.edu/oai:fau.digital.flvc.org:fau_4303 |
Contributors | Herring, Garth, Florida Atlantic University, Charles E. Schmidt College of Science, Department of Biological Sciences |
Publisher | Florida Atlantic University |
Source Sets | Florida Atlantic University |
Language | English |
Detected Language | English |
Type | Text, Electronic Thesis or Dissertation |
Format | xviii, 262 p. : ill. (some col.)., electronic |
Coverage | Florida, Everglades, Florida, Everglades, Florida, Everglades |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0011 seconds