This thesis proposes a new class of bivariate autoregressive conditional median duration models for matched high-frequency data and develops some inferential methods for an existing univariate model as well as the bivariate models introduced here to facilitate model fitting and forecasting. During the last two decades, the autoregressive conditional mean duration (ACD) model has been playing a dominant role in analyzing irregularly spaced high-frequency financial data. Univariate ACD models have been extensively discussed in the literature. However, some major challenges remain. The existing ACD models do not provide a good distributional fit to financial durations, which are right-skewed and often exhibit unimodal hazard rates. Birnbaum-Saunders (BS) distribution is capable of modeling a wide variety of positively skewed data. Median is not only a robust measure of central tendency, but also a natural scale parameter of the BS distribution. A class of conditional median duration models, the BS-ACD and the scale-mixture BS ACD models based on the BS, BS power-exponential and Student-t BS (BSt) distributions, have been suggested in the literature to improve the quality of the model fit. The BSt-ACD model is more flexible than the BS-ACD model in terms of kurtosis and skewness. In Chapter 2, we develop the maximum likelihood estimation method for the BSt-ACD model. The estimation is performed by utilizing a hybrid of optimization algorithms. The performance of the estimates is then examined through an extensive Monte Carlo simulation study. We also carry out model discrimination using both likelihood-based method and information-based criterion. Applications to real trade durations and comparison with existing alternatives are then made. The bivariate version of the ACD model has not received attention due to non-synchronicity. Although some bivariate generalizations of the ACD model have been introduced, they do not possess enough flexibility in modeling durations since they are conditional mean-based and do not account for non-monotonic hazard rates. Recently, the bivariate BS (BVBS) distribution has been developed with many desirable properties and characteristics. It allows for unimodal shapes of marginal hazard functions. In Chapter 3, upon using this bivariate BS distribution, we propose the BVBS-ACD model as a natural bivariate extension of the BS-ACD model. It enables us to jointly analyze matched duration series, and also capture the dependence between the two series. The maximum likelihood estimation of the model parameters and associated inferential methods have been developed. A Monte Carlo simulation study is then carried out to examine the performance of the proposed inferential methods. The goodness-of-fit and predictive performance of the model are also discussed. A real bivariate duration data analysis is provided to illustrate the developed methodology. The bivariate Student-t BS (BVBSt) distribution has been introduced in the literature as a robust extension of the BVBS distribution. It provides greater flexibility in terms of the kurtosis and skewness through the inclusion of an additional shape parameter. In Chapter 4, we propose the BVBSt-ACD model as a natural extension of the BSt-ACD model to the bivariate case. We then discuss the maximum likelihood estimation of the model parameters. A simulation study is carried out to investigate the performance of these estimators. Model discrimination is then done by using information-based criterion. Methods for evaluating the goodness-of-fit and predictive ability of the model are also discussed. A simulated data example is used to illustrate the proposed model as compared to the BVBS-ACD model. Finally, in Chapter 5, some concluding comments are made and also some problems for future research are mentioned. / Thesis / Master of Science (MSc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/23977 |
Date | 22 November 2018 |
Creators | Tan, Tao |
Contributors | Balakrishnan, Narayanaswamy, Mathematics and Statistics |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds