L’étude de la diffusion des ondes électromagnétiques par une surface rugueuse aléatoire est de première importance dans de nombreuses disciplines et conduit à diverses applications notamment pour le traitement des surfaces par télédétection. En connaissant les modes de rétrodiffusion, on peut détecter la présence de la rugosité aléatoire indésirable de la surface de réflection telle que le réflecteur d'antenne et par conséquent trouver un moyen de corriger ou compenser les erreurs de phase. Cette thèse porte sur l’obtention de l'humidité du sol de surface à partir de mesures radar. La description de la surface rugueuse de façon aléatoire est présentée, suivie par les interactions d'ondes électromagnétiques avec les média. En particulier, un modèle d'équation intégrale avancé (AIEM) est introduit. La validité du modèle AIEM, qui est adopté comme modèle de travail, se fait par une large comparaison avec des simulations numériques et des données expérimentales. On analyse également les caractéristiques des configurations radar bistatique et on étudie la sensibilité de la diffusion bistatique à l'humidité du sol et à la rugosité de surface et, dans le même temps, le cadre de la détermination de l'humidité du sol à partir de mesures radar utilisant un réseau de neurones à base de filtres de Kalman récurrents est présenté. La formation du réseau et l'inversion des données sont décrits. / Electromagnetic waves scattering from a randomly rough surface is of palpable importance in many fields of disciplines and bears itself in various applications spanned from surface treatment to remote sensing of terrain and sea. By knowing the backscattering patterns, one may detect the presence of the undesired random roughness of the reflection surface such as antenna reflector and accordingly devise a means to correct or compensate the phase errors. Therefore, it has been both theoretically and practically necessary to study the electromagnetic wave scattering from the random surfaces. This dissertation focuses on the retrieval of surface soil moisture from radar measurements. The description of the randomly rough surface is presented, followed by the electromagnetic wave interactions with the media. In particular, an advanced integral equation model (AIEM) is introduced. The validity of the AIEM model, which is adopted as a working model, is made by extensive comparison with numerical simulations and experimental data. Also analyzes the characteristics of the bistatic radar configurations and dissects the sensitivity of bistatic scattering to soil moisture and surface roughness of soil surfaces. Meanwhile presents a framework of soil moisture retrieval from radar measurements using a recurrent Kalman filter-based neural network. The network training and data inversion are described in detail.
Identifer | oai:union.ndltd.org:theses.fr/2016STRAD032 |
Date | 23 September 2016 |
Creators | Liu, Yuan |
Contributors | Strasbourg, Li, Zhao-Liang |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds