A thesis submitted to the School of Graduate Studies in partial fulfilment of the requirements for the degree of Master of Science in the graduate academic unit of Biology / Microparticles enter aquatic environments through many sources, including wastewater treatment plants (WWTPs), but their uptake by aquatic organisms is poorly understood. Freshwater bivalves accumulate multiple contaminants, making them potential bioindicators for MP pollution. This study aims to understand the abundance and characteristics of microparticles that accumulate in wild bivalves. Samples were collected from 5 locations along the Grand River (Ontario, Canada) in 2021-2022, including 3 municipal WWTPs where both an upstream and downstream site were sampled. At each site, fingernail clams (Sphaeriidae, n=5 composite samples), flutedshell mussels (Lasmigona costata, n=10), and surface water (n=3) were sampled. Within the mussels, the gill, digestive gland, and hemolymph tissues were targeted and compared. Microparticles were isolated and quantified via stereomicroscopy but have not yet been confirmed as plastic; as such, they will be referred to herein as microparticles. Fibers were the dominant morphology and clear, blue, and black were the most common colours, but there were some differences among sites and sample types. Most microparticles were between 80 μm and 1 mm in length. Fingernail clams contained the highest microparticle counts per mass of tissue at 35.5 ± 29.4 microparticles/g, mussel tissues ranged from 4.3 ± 4.2 microparticles/mL to 6.5 ± 8.1 microparticles/g, and water samples contained the lowest counts at 0.0055 ± 0.0028 microparticles/mL. Elevated microparticle counts at downstream sites were only seen in mussel gills and not other bivalve tissues. Surface water samples did not show elevated counts downstream of the WWTPs and microparticle exposures were similar across sites. This study provides baseline data for future monitoring and informs toxicity studies to fully assess the risk of microparticles to vulnerable freshwater bivalves and other aquatic organisms. It also suggests microparticles in freshwater bivalves are coming from sources in addition to WWTPs and are ubiquitous in the Grand River. / Thesis / Master of Science (MSc) / Microplastics are found in nearly every environment, especially freshwater ecosystems. These plastics come from a variety of sources, and this study focuses on assessing the characteristics of microparticles in freshwater clams and mussels (bivalves) that have been exposed to municipal wastewaters. Bivalves and water samples were collected from 5 locations along the Grand River (Ontario, Canada) in 2021-2022, and microparticles were extracted and analyzed from each sample. Fibers were the most abundant type of microparticle, with colours consisting mostly of clear, blue, and black. Clams had the highest number of microparticles per mass of tissue collected and the lowest counts were found in water samples. Higher microparticle counts were only seen in one (mussel gill) of the four tissues from bivalves collected downstream of wastewater outfalls. This study provides baseline data on microparticle characteristics in freshwater bivalves and will guide future studies on the toxicity of microparticles to these animals.
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/28993 |
Date | January 2023 |
Creators | Robson, Emily |
Contributors | Kidd, Karen, Biology |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0017 seconds