Spider silk from the female black widow spider, Latrodectus hesperus, is made of extraordinary biomolecules of nature. Efforts of the scientific community to commercially synthesize silks have become a collaborating, yet competitive race, to characterize the proteins that contribute to its intriguing biomechanics. Little has been reported on aqueous silk molecules in black widow spider silk, which are quite different from the large water insoluble core fibroins. In this study, a novel, aqueous aggregate gland derived silk factor (AgSF 1) was investigated using proteomics and immunological approaches. Western blot analyses of whole tissue lysates and solublized silk fibers revealed high levels of AgSFl in the aggregate gland, in the web scaffolding junctions, and in wrapping silk. MS/MS analyses of tryptic digest products from solubilized wrapping silk and aggregate gland whole cell lysate also confirmed the presence of AgSFl in these samples. Possible post-translational modifications were also analyzed by two-dimensional gel electrophoresis (2DE) and MS/MS analysis. AgSFl was localized in the web scaffolding junctions and our data supports a role as an adhesive silk protein that serves as a center for connecting scaffolding fibers that functions to reduce the tensile strength of scaffolding fibers, which facilitates capture of aerial insects.
Identifer | oai:union.ndltd.org:pacific.edu/oai:scholarlycommons.pacific.edu:uop_etds-1740 |
Date | 01 January 2009 |
Creators | Blasingame, Tiffany |
Publisher | Scholarly Commons |
Source Sets | University of the Pacific |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of the Pacific Theses and Dissertations |
Page generated in 0.002 seconds