Return to search

Rapid Neutron-Capture Nucleosynthesis from the Births and Deaths of Neutron Stars

The astrophysical origins of the rapid neutron-capture process (r-process), which gives rise to roughly half of the elements heavier than iron, has remained a mystery for almost 70 years. The likely violent events, which seed the r-process abundances in our solar system and galaxy, remain uncertain to this day. This is in part due to nuclear physics uncertainties associated with the r-process itself, but mainly due to uncertainties in astrophysics modeling. The discovery of the radioactively-powered kilonova emission from the neutron star merger event GW170817 confirmed the violent deaths of neutron stars as one key site of the r-process in the universe. However, other evidence appears to favor an additional r-process channel that more promptly follows star formation in the universe, such as core-collapse supernovae (CCSNe), i.e. the brilliant births of neutron stars.

The two viable sites for the r-process are (1) core-collapse supernovae (CCSNe), which are explosions of massive stars at the end of their lives and (2) compact object mergers, which are violent collisions of stellar remnants formed at the endpoints of stellar evolution.

Chapters 2 and 3 of this dissertation present general relativistic magnetohydrodynamic simulations of one potential r-process site associated with CCSNe: the neutrino-driven wind. These outflows are launched from the hot proto-neutron star (PNS) remnant by neutrino-heating above their surfaces, within seconds after the collapse of a massive star. However, previous work has shown that spherically symmetric winds from non-rotating PNS fail to achieve the requisite conditions for a robust r-process. Chapter 2 explores for the first time the combined effects of rapid rotation and strong gravity of the PNS on the wind properties. Chapter 3 explores the impact of a dynamically strong ordered magnetic field on the properties of non-rotating PNS winds. The wind in both cases is simulated in a controlled environment rather than as a part of a self-consistent global CCSNe simulation, to assess the viability of r-process nucleosynthesis as a function of PNS properties (neutrino energies/luminosities, rotation rate, magnetization).

We find that rapid rotation allows for outflows that are ~10% more neutron-rich in the equatorial region, where the mass loss rate is roughly an order of magnitude higher than that of otherwise equivalent non-rotating models. The birth of very rapidly spinning neutron stars may thus be a site for the production of light r-process nuclei (38 < Z < 47). For PNSs with sufficiently strong magnetic fields (such that magnetic pressure exceeds gas pressure above the PNS surface), we find that equatorial outflows are trapped by the magnetic field in a region near the surface, and therefore receive additional neutrino heating relative to a freely-expanding unmagnetized wind. This allows a modest fraction of the wind material to achieves entropies high enough to synthesize 2nd peak r-process elements via an alpha-rich freeze-out mechanism.

The final chapter explores the interplay between the r-process and the dynamics of compact object merger ejecta. Gravitational wave observatories are expected to detect several additional binary neutron star (BNS) and black hole-neutron star (BHNS) mergers in current and future observing runs, some of which may be accompanied by electromagnetic counterparts such as kilonovae. However, distinguishing more distant BNS from BHNS mergers based on their associated gamma-ray bursts (GRB), has proven tricky.

This chapter presents a calculation of the effects of r-process heating on the dynamics of tidal ejecta from BNS and BHNS mergers. In particular we explore whether late-time fall-back of weakly bound debris created during the merger to the central black hole remnant, can explain the temporally extended X-ray emission observed following several merger GRB on timescales of several seconds to minutes. As a result of the different impact that r-process heating has depending on the composition of the ejecta and the mass of the black hole, a method to differentiate BHNS from BNS mergers, based on their extended X-ray emission, is proposed.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/7zay-sv56
Date January 2023
CreatorsDesai, Dhruv Ketan
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0024 seconds