Return to search

Black-box optimization of simulated light extraction efficiency from quantum dots in pyramidal gallium nitride structures

Microsized hexagonal gallium nitride pyramids show promise as next generation Light Emitting Diodes (LEDs) due to certain quantum properties within the pyramids. One metric for evaluating the efficiency of a LED device is by studying its Light Extraction Efficiency (LEE). To calculate the LEE for different pyramid designs, simulations can be performed using the FDTD method. Maximizing the LEE is treated as a black-box optimization problem with an interpolation method that utilizes radial basis functions. A simple heuristic is implemented and tested for various pyramid parameters. The LEE is shown to be highly dependent on the pyramid size, the source position and the polarization. Under certain circumstances, a LEE over 17% is found above the pyramid. The results are however in some situations very sensitive to the simulation parameters, leading to results not converging properly. Establishing convergence for all simulation evaluations must be done with further care. The results imply a high LEE for the pyramids is possible, which motivates the need for further research.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-162235
Date January 2019
CreatorsOlofsson, Karl-Johan
PublisherLinköpings universitet, Matematiska institutionen
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds