abstract: Reading partners’ actions correctly is essential for successful coordination, but interpretation does not always reflect reality. Attribution biases, such as self-serving and correspondence biases, lead people to misinterpret their partners’ actions and falsely assign blame after an unexpected event. These biases thus further influence people’s trust in their partners, including machine partners. The increasing capabilities and complexity of machines allow them to work physically with humans. However, their improvements may interfere with the accuracy for people to calibrate trust in machines and their capabilities, which requires an understanding of attribution biases’ effect on human-machine coordination. Specifically, the current thesis explores how the development of trust in a partner is influenced by attribution biases and people’s assignment of blame for a negative outcome. This study can also suggest how a machine partner should be designed to react to environmental disturbances and report the appropriate level of information about external conditions. / Dissertation/Thesis / Masters Thesis Human Systems Engineering 2019
Identifer | oai:union.ndltd.org:asu.edu/item:53677 |
Date | January 2019 |
Contributors | Hsiung, Chi-Ping (Author), Chiou, Erin (Advisor), Cooke, Nancy (Advisor), Zhang, Wenlong (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Masters Thesis |
Format | 76 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0243 seconds