Return to search

Structure-property relationships of multiphase copolymers

Over the years there have been many studies on the theoretical and phenomenalogical aspects of starblock, di- and tri-block copolymer systems with very narrow molecular weight distributions. However, in many real multiblock systems the effect of such variables as; chemical composition distribution, molecular weight distribution and block architecture, among others, are not very well understood. The key to gaining a better understanding of these systems lies in the use of synthetic and process controlled variables. Seven different systems were used to study the effect of various synthetic and process controlled variables.

The poly(butene sulfone) (PBS)-polydimethylsiloxane (PDMS) graft copolymers were synthesized by a free radical technique which involves the terpolymerization of butene, SO, and hexenyl functionalized polydimethylsiloxane macromonomers. The surface and bulk morphologies of a series of PBS-g-PDMS compolymers with 1, 5, 10, and 20K PDMS graft molecular weights at 5 and 20Wt.% PDMS incorporation. Additionally, for each graft molecular weight and at each composition, copolymers with a low and a high degree of polymerization of the PBS backbone were analyzed. A two phase morphology was found to exist with PDMS domain size increasing with increasing PDMS graft length. The type of morphology observed was dependent on PDMS composition, and in some cases the degree of polymerization and average number of grafts/backbone. These factors were also found alter the nature of the surface morphology and the related surface properties.

The effect of PDMS segment molecular weight, the chemical nature of the polyimide segment, the procedure used to imidized the polyimide and processing conditions on the structure-property relationships in a series of polyimide-PDMS containing approximately 15Wt.% PDMS was studied. It was determined that as the polarity of the polyimide segment increased the morphology shifted to texture with lower surface/volume ratios. Casting the copolymers from an NMP solution favored a more discrete morphology than the thermally treated compression molded samples. The modulus was found to increase as the degree of phase separation increased with increasing PDMS segment size at constant composition. In addition, the solution cast films were found to have a higher modulus than the compression molded analogs.

The morphology of a series of methacrylate based block ionomer was investigated. The effect of ionic block length, the architecture of the segments, and variations in the nature of ionic group were studied. SAXS revealed the presence of multiple scattering maxima in the dilbock materials. Both highly ordered and disordered region were observed from TEM analysis. The observed spacing from TEM measurements and SAXS were in good agreement. The interdomain spacings between the ionic domains were found to be a strong function of ionic block length. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/38748
Date10 July 2007
CreatorsYork, Gregory A.
ContributorsMaterials Engineering Science, McGrath, James E., Wilkes, Garth L., Ward, Thomas C., Marand, Herve, Dwight, David W.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation, Text
Formatxix, 366 leaves, BTD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 25146009, LD5655.V856_1990.Y674.pdf

Page generated in 0.0017 seconds