Return to search

USE OF HYBRID DIFFUSE OPTICAL SPECTROSCOPIES IN CONTINUOUS MONITORING OF BLOOD FLOW, BLOOD OXYGENATION, AND OXYGEN CONSUMPTION RATE IN EXERCISING SKELETAL MUSCLE

This study combines noninvasive hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] with occlusive calibration for continuous measurement of absolute blood flow (BF), tissue blood oxygenation (StO2), and oxygen consumption rate (VO2) in exercising skeletal muscle. Subjects performed rhythmic dynamic handgrip exercise, while an optical probe connected to a hybrid NIRS/DCS flow-oximeter directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and [tHb]), StO2, relative BF (rBF), and relative VO2 (rVO2) in the forearm flexor muscles. Absolute baseline BF and VO2 were obtained through venous and arterial occlusions, respectively, and used to calibrate continuous relative parameters. Previously known problems with muscle fiber motion artifact in optical measurements were mitigated with a novel dynamometer-based gating algorithm. Nine healthy young subjects were measured and results validated against previous literature findings. Ten older subjects with fibromyalgia and thirteen age-matched healthy controls were then successfully measured to observe differences in hemodynamic and metabolic response to exercise. This study demonstrates a novel application of NIRS/DCS technology to simultaneously evaluate quantitative hemodynamic and metabolic parameters in exercising skeletal muscle. This method has broad application to research and clinical assessment of disease (e.g. peripheral vascular disease, fibromyalgia), treatment evaluation, and sports medicine.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:cbme_etds-1002
Date01 January 2012
CreatorsGurley, Katelyn
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations--Biomedical Engineering

Page generated in 0.0027 seconds