Return to search

Heart Rate Variability Extraction from Video Signals

Heart Rate Variability (HRV) analysis has been garnering attention from researchers due to its wide range of applications. Medical researchers have always been interested in Heart Rate (HR) and HRV analysis, but nowadays, investigators from variety of other fields are also probing the subject. For instance, variation in HR and HRV is connected to emotional arousal. Therefore, knowledge from the fields of affective computing and psychology, can be employed to devise machines that understand the emotional states of humans. Recent advancements in non-contact HR and HRV measurement techniques will likely further boost interest in emotional estimation through . Such measurement methods involve the extraction of the photoplethysmography (PPG) signal from the human's face through a camera. The latest approaches apply Independent Component Analysis (ICA) on the color channels of video recordings to extract a PPG signal. Other investigated methods rely on Eulerian Video Magnification (EVM) to detect subtle changes in skin color associated with PPG.
The effectiveness of the EVM in HR estimation has well been established. However, to the best of our knowledge, EVM has not been successfully employed to extract HRV feature from a video of a human face. In contrast, ICA based methods have been successfully used for HRV analysis. As we demonstrate in this thesis, these two approaches for HRV feature extraction are highly sensitive to noise. Hence, when we evaluated them in indoor settings, we obtained mean absolute error in the range of 0.012 and 28.4.
Therefore, in this thesis, we present two approaches to minimize the error rate when estimating physiological measurements from recorded facial videos using a standard camera. In our first approach which is based on the EVM method, we succeeded in extracting HRV measurements but we could not get rid of high frequency noise, which resulted in a high error percentage for the result of the High frequency (HF) component. Our second proposed approach solved this issue by applying ICA on the red, green and blue (RGB) colors channels and we were able to achieve lower error rates and less noisy signal as compared to previous related works. This was done by using a Buterworth filter with the subject's specific HR range as its Cut-Off.
The methods were tested with 12 subjects from the DISCOVER lab at the University of Ottawa, using artificial lights as the only source of illumination. This made it a challenge for us because artificial light produces HF signals which can interfere with the PPG signal. The final results show that our proposed ICA based method has a mean absolute error (MAE) of 0.006, 0.005, 0.34, 0.57 and 0.419 for the mean HR, mean RR, LF, HF and LF/HF respectively. This approach also shows that these physiological parameters are highly correlated with the results taken from the electrocardiography (ECG).

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/33003
Date January 2015
CreatorsAlghoul, Karim
ContributorsELSADDIK, Abdulmotaleb, ALOSMAN, Hussein
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0023 seconds