Return to search

Kynurenine pathway metabolism at the blood-brain barrier

A major product of HIV-infected and cytokine-stimulated monocytic-lineage cells is quinolinic acid (QUIN), a neurotoxic metabolite of the kynurenine pathway (KP) of L-tryptophan (L-Trp) metabolism. Despite the large number of neurotoxins found in HIV patients with AIDS Dementia Complex (ADC), only QUIN correlates with both the presence and severity of ADC. With treatment, cerebrospinal fluid (CSF) QUIN concentrations decrease proportionate to the degree of clinical and neuropsychological improvement. As endothelial cells (EC) of the blood-brain barrier (BBB) are the first brain-associated cell that a bloodborne pathogen would encounter, this project examined the BBB response to KP metabolites, as these are implicated in damage of the CNS associated with ADC. Using RT-PCR and HPLC/gas chromatographymass spectrometry (GC-MS), I found that cultured primary human BBB EC and pericytes constitutively expressed the KP. EC synthesised kynurenic acid (KA) constitutively, and after immune activation, kynurenine (KYN). Pericytes produced small amounts of picolinic acid and after immune activation, KYN. An SV40-transformed BBB EC showed no KP expression. By contrast, human umbilical vein EC only expressed low levels of KA after immune activation, however human dermal microvascular EC showed a similar constitutive and inducible KP to that in BBB EC. As T cells are central to primary HIV infection, I also examined KP expression in two CD4+ and one CD4- cell lines, but none showed either constitutive or inducible KP expression. I next examined how QUIN might interact with BBB EC. There was no binding of 3H-QUIN to cultured primary human BBB EC, however a biologically relevant concentration of QUIN induced changes in gene expression which adversely affected EC function, possibly mediated by lipid peroxidation and oxidative stress. The upregulated genes were of the heat shock protein family, and the downregulated genes were associated with regulation of cell adhesion, tight junction and cytoskeletal stability, metalloproteinase (MMP) regulation, apoptosis and G protein signaling. Immunofluorescence showed that QUIN induced morphological changes in BBB EC consistent with the changes in gene expression. Gelatin zymography showed that this was not mediated by MMPs, as constitutive MMP expression was unchanged. These data provide strong evidence for QUIN directly damaging the BBB in the context of HIV infection.

Identiferoai:union.ndltd.org:ADTP/278918
Date January 2006
CreatorsOwe-Young, Robert, School of Medicine, UNSW
PublisherAwarded by:University of New South Wales. School of Medicine
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Robert Owe-Young, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0016 seconds