Return to search

EphA4 Influences Blood Brain Barrier Disruption and Endothelial Cell Response following Traumatic Brain Injury in a Mouse Model

An astonishing number of deaths and related disabilities are attributed to traumatic brain injury (TBI) in the United States per year. Due to the unforeseeable nature of TBI and its association with the sequelae of other neurological comorbidities, research is centered around the secondary responses of brain mechanisms proceeding the initial mechanical injury. Blood brain barrier disruption is a well described driver of this secondary injury response and predictive marker of prognosis following TBI. Although BBB disruption plays a role in subsequent edema, inflammation, and the overall TBI outcome, the molecular mechanisms responsible for its regulation remain to be investigated. A large family of receptor tyrosine kinases, known as Eph receptors, that are important for axon growth and guidance embryonically and early-postnatally have been implicated in brain insults. Previous findings have shown that Eph expression is upregulated at the mRNA and protein level immediately following TBI. Moreover, ablation of Eph receptors on endothelial cells (ECs) revealed improved blood flow to the lesioned cortex in knockout (KO) mice compared to wild type (WT). Based on these results, we hypothesize that Eph receptors negatively regulate BBB permeability leading to neural dysfunction and motor deficits following TBI. To investigate this hypothesis, we characterized the temporal profile of the BBB, evaluated the EC-specific effects of Eph receptors, and used RNA sequencing to assess the cell-specific contributions following TBI in WT compared to KO mice. Our results show that EC-specific loss of Eph expression ameliorated BBB permeability at 6hr, 1-, 4-, and 7-days post injury (dpi) correlating with improved motor function at 7- and 14-dpi. Furthermore, mechanistic studies revealed increased mRNA expression of Tie2, Ang1, and the tight junction proteins Zona Occludens and Occludin in KO mice compared to WT. As well as, connection with neuronal processes. Based off of these findings, we utilized a soluble Tie2 inhibitor to elucidate the influence of Eph receptors on the Tie2/Ang pathway, and their role in mediating the effects seen. Tie2 inhibition of the KO mice revealed similar BBB disruption and lesion volume as WT 1dpi, attenuating the previous protection KO mice demonstrated. Future studies are necessary to understand other pathways that may be implicated in Eph receptor influence on endothelial cells such as inflammatory mediators and neurovascular crosstalk. This data provides evidence that Eph receptors negatively mediate EC response through downstream signaling of the Tie2/Ang pathway and may be a means of therapeutic target in the future. / Ph.D. / Traumatic brain injuries (TBIs) impact millions of individuals each year in the United States, making it a significant cause of death and disability. Furthermore, TBI has been linked to other comorbidities such as Alzheimers Disease, mood disorders, and epilepsy. Since the primary impact of a TBI cannot be predicted or prevented, research focuses on the secondary injury response as a therapeutic target to improve the outcomes following brain insult. Blood brain barrier (BBB) disruption is a well described consequence of TBI and has been correlated to a worse prognosis. The BBB normally provides a barrier between the circulating blood and the brain as protection and to maintain homeostasis. It is understood that decreased BBB integrity leads to subsequent edema, inflammatory response, and glial excitotoxicity, however, the mechanisms regulating this response remain to be investigated. Recent focus has been on a family of receptor tyrosine kinases, Eph receptors, that are unregulated following brain injury. Utilizing a mouse model, we can manipulate the temporal and spatial expression of Eph receptors to understand their role in the secondary injury cascade. Findings indicated that ablation of Eph receptors specifically on endothelial cells (ECs) resulted in preservation of BBB integrity at 1-, 4-, and 7- days following injury. Based on these results, we hypothesize that Eph receptor signaling on ECs negatively mediates BBB function and recovery following TBI. To test this hypothesis, we performed a comparative analysis between wild type (WT) and knockout (KO) mice on the expression of genes integral to BBB integrity, functional motor deficits, and loss of tissue in the lesion site following injury. We discovered significant decreases in lesion volume correlating with improvements in motor function in the KO mice compared to the WT. Moreover, KO mice showed increased expression of genes important for BBB maintenance such as Occludin and Tie2. To further discern the mechanism for these effects, we blocked Tie2 in the KO mice and observed similar negative prognostic indicators as in the WT. Future studies are warranted to understand the downstream signaling of Eph receptors on the Tie2 pathway. This data provides evidence that Eph signaling influences the BBB negatively following TBI through the Tie2 pathway and may be exploited for therapeutic means in the future.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/109813
Date January 2022
CreatorsCash, Alison M.
ContributorsDepartment of Biomedical Sciences and Pathobiology, Theus, Michelle H., Rossmeisl, John H. Jr., Pickrell, Alicia M., Morton, Paul
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf, application/pdf
RightsAttribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/

Page generated in 0.0024 seconds