Return to search

NeMeSys - A Showcase of Data Oriented Near Memory Graph Processing

NeMeSys is a NUMA-aware graph pattern processing engine, which uses the Near Memory Processing paradigm to allow for high scalability. With modern server systems incorporating an increasing amount of main memory, we can store graphs and compute analytical graph algorithms like graph pattern matching completely in-memory. Our system blends state-of-the-art approaches from the transactional database world together with graph processing principles. We demonstrate, that graph pattern processing - standalone and workloads - can be controlled by leveraging different partitioning strategies, applying Bloom filter based messaging optimization and, given performance constraints, can save energy by applying frequency scaling of CPU cores.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:80636
Date15 September 2022
CreatorsKrause, Alexander, Kissinger, Thomas, Habich, Dirk, Lehner, Wolfgang
PublisherACM
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/acceptedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation978-1-4503-5643-5, 10.1145/3299869.3320226, info:eu-repo/grantAgreement/Deutsche Forschungsgemeinschaft/Sonderforschungsbereiche/164481002//HAEC - Highly Adaptive Energy-Efficient Computing/SFB 912

Page generated in 0.002 seconds