Return to search

Optimization of the forensic identification of blood using surface-enhanced Raman spectroscopy

Blood is considered one of the most important types of forensic evidence found at a crime scene. The use of surface-enhanced Raman spectroscopy (SERS) provides a potentially non-destructive and highly sensitive technique for the confirmation of blood and this method can be applied using a portable Raman device with quick sample preparation and processing. Crime scenes are inherently complex and the impact of SERS analysis provides easy use and practical application for in-field sample analysis.
SERS is one of the few confirmatory techniques employed for the identification of blood at a crime scene or in the forensic laboratory. This method is able to distinguish between blood and other body fluids by collecting a SERS spectrum from a sample placed on a surface that has been embedded with gold nanoparticles (AuNPs). The AuNPs create an electric field surface enhancement that produces an intense molecular vibrational signal, leading to a SERS enhancement. The SERS enhancement allowed for sensitive blood detection at dilutions greater than 1:10,000. A stain transfer method to the SERS substrate was optimized by extracting dried bloodstains with water, saline, and various acid solutions. Fifty percent aqueous acetic acid solutions was found to be the most efficient in retaining the blood components and releasing the hemoglobin component of blood for detection.
The SERS spectrum of blood is a robust signature of hemoglobin that does not significantly change between donors nor over time. Characteristic peaks for the identification of blood are 754, 1513, and 1543 wavenumbers (cm-1), attributed to a pyrrole ring breathing mode (15) and two Cβ-Cβ stretches (11, 38), respectively. These key SERS peaks, high sensitivity, and signal enhancement are favorable when compared to normal Raman spectroscopy. A quick and easy-to-use procedure for on-site sample analysis for the detection of blood on different substrates was developed and applied on a portable Raman device. Various nonporous and porous substrates including glass, ceramic tile, cotton, denim, fleece, nylon, acetate, wool, polyester, wood, and coated wood yielded strong results for identification of bloodstains. In addition, different commercial and in-house SERS substrates were tested to determine effectiveness for the detection and identification of blood.
SERS identification of blood for forensic work is a potentially non-destructive and portable tool that can be applied for quick and easy examination of evidence at a crime scene. The high sensitivity and selectivity of SERS provides a robust spectroscopic signature that aids in the confirmation of blood, even when it is not visible to the naked eye. It is a more favorable method when compared to current presumptive and confirmatory tests for blood and can be applied to stains on different SERS substrates and a variety sample surfaces for universal testing.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/41366
Date22 August 2020
CreatorsShaine, Miranda L.
ContributorsBrodeur, Amy N.
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0018 seconds