The aim of this study is to design a compliant lock mechanism for a dishwasher, using a systematic approach. Functionally binary pinned-pinned segment that exhibits bistable behavior is utilized. Pseudo-rigid-body model of the whole mechanism and the half segment is developed separately and the corresponding calculations are carried out. Among current solutions a different method namely &ldquo / arc fitting method&rdquo / is developed and it is utilized to construct the model. A software code is written to get the exact solutions, which require the evaluation of elliptic integrals. Results are compared with the analytical model and confirmed with physical prototype. Predefined tip forces are seen to provide the transition from one stable position to other. Durability, reliability and compactness characteristics are particularly considered.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12614347/index.pdf |
Date | 01 June 2012 |
Creators | Unverdi, Uygar |
Contributors | Soylemez, Eres |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0071 seconds