Return to search

Adaptive heterothermy in desert mammals.

Endothermic homeothermy is a major feature of the adaptive suites of tachymetabolic animals such as mammals and birds. The advantages homeothermy confers on birds and mammals include relative independence from the environment, a stable internal milieu, and possibly the ability to sustain high aerobic activity (Bennett and Ruben 1979). Some mammals in situations of limited water or energy availability, however, depart markedly from homeothermy and instead display patterns of heterothermy. Torpor is a lowering of body temperature (T(b)) to conserve energy and/or water. I studied the energetics of arousal from torpor in two desert pocket mice species. The species differed in warming rates and arousal durations, but used similar amounts of energy to arouse. The smaller species, Perognathus amplus, lost mass more quickly while fasting in the cold, yet waited as long as the larger species, Chaetodipus baileyi, before entering torpor. P. amplus maintained a lower T(b) during topor than C. baileyi. The thermodynamics of arousal indicated that metabolic rate during arousal was a function of T(b) but not ambient temperature (Tₐ), that the animals changed thermal conductance to increase heat gain when Tₐ was greater than T(b), and that Q₁₀ decreased during arousals. In contrast to torpor, adaptive hyperthermia provides desert mammals in dry, hot environments a means to conserve water that would normally be used for evaporative cooling. I modeled the effects of body size on adaptive hyperthermia and discovered that small mammals gain the most in terms of water savings using this strategy, and that small and large mammals can spend larger fractions of the day active than do medium size mammals. I demonstrated that two desert ground squirrel species make use of adaptive hyperthermia during the summer near Tucson, Arizona by following free-ranging squirrels implanted with temperature-sensitive radio transmitters. Ground squirrel T(b) fluctuated almost continuously, ranging from about 35°C to over 42°C, and rarely approached steady state. Of the two species studied, Ammospermophilus harrisii had higher mean T(b), similar maximum T(b), and lower T(b) variability compared to Spermophilus tereticaudus. These results are consistent with the more wide-ranging foraging style of A. harrisii compared to S. tereticaudus.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/185449
Date January 1991
CreatorsOsborn, Scott Donald.
ContributorsVleck, David, Braun, Eldon J., Calder, William A., Dantzler, William H., Vleck, Carol Masters
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0017 seconds