Return to search

Constructing Numerical Methods For Solving The Guiding Equation In Bohmian Mechanics

The aim of this thesis was to simulate a part of a proposed experiment by Lev Vaidman by using Bohmian mechanics. To do this a numerical method for solving the Schrödinger equation and theguiding equation was created, with several ways of making the simulation more efficient.To make the simulation work more efficiently the Schrödinger equation was applied to only a small region of the whole setup. This region followed the wavefunction of significant values and could change size during the simulation. A beam splitter was constructed in the form of a thin potential barrier. The beam splitter was tested to verify that the reflected and transmitted angles agreed with expectations. A virtual detector was constructed and used for the calibration of the beam splitter to determine which potential resulted in dividing the wave packet into two wave packets of equal intensity. A fixed angle mirror was used for testing the reflection of a wave packet for the reflected angle and concluded that it agreed with the expectations for it. Testing a time dependent mirror for different frequencies and amplitudes was performed, with the result that the numerical method could be used to determine the particles’ trajectories. These results were used to construct a larger setup that was a small part of Vaidman’s proposed experiment. These setups were done in several version. All setups had one wave packet that went through one beam splitter and separated into two wave packets. These two wave packets reflected at two mirrors with different frequencies and then interfered with each other at either free space or at another beam splitter. The result of the simulation of these setups was that the particles’ trajectories could be calculated with the guiding equation. / Syftet med denna avhandling var att simulera en del av det föreslagna experimentet av Lev Vaidman med hjälp av Bohmsk mekanik. För att göra detta skapades en numerisk metod för att lösa Schrödingerekvationen och den ledande ekvationen, ”the guiding equation”, med flera sätt att effektivisera simuleringen. För att effektivisera simuleringen tillämpades Schrödingerekvationen på endast en liten region i hela uppställningen. Denna region följde vågfunktionen med betydande värden och kunde ändra storlek under simuleringen.En stråldelare konstruerades i form av en tunn potentialbarriär. Stråldelaren testades för att verifiera attde reflekterade och överförda vinklarna överensstämde med förväntningarna. En virtuell detektorkonstruerades och användes för kalibrering av stråldelaren för att bestämma vilken potential som resulterade i att vågpaketet delades in i två vågpaket med samma intensitet.En spegel med fast vinkel användes för att testa reflektionen av ett vågpaket för den reflekterade vinkeln och kom fram till att den överensstämde med förväntningarna för den. Att testa en tidsberoendespegel för olika frekvenser och amplituder utfördes med resultatet att den numeriska metoden kunde användas för att bestämma partiklarnas banor. Dessa resultat användes för att konstruera en större uppställning av ett experiment som var en liten delav Vaidmans föreslagna experiment. Dessa uppställningar gjordes i flera versioner. Alla uppställningar hade ett vågpaket som gick igenom en stråldelare och separerades i två vågpaket. Dessa två vågpaket reflekterades vid två speglar med olika frekvenser och interfererade sedan varandra antingen i en tom rymd eller vid en annan stråldelare. Resultatet av simuleringen av dessa inställningar var att partiklarnas banor kunde beräknas med ledande ekvation.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-436860
Date January 2021
CreatorsRobert, Nilsson
PublisherUppsala universitet, Materialteori
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationFYSAST ; FYSMAS1146

Page generated in 0.0019 seconds