Heat transfer technologies based on boiling refer to applications like heat pumps, waste heat recovery systems, power plants and electronic components cooling. The widespread use of boiling as the heat transfer mode is due to high heat transfer coefficients associated with the phase change from liquid to vapor. Boiling heat transfer coefficients can be further enhanced by modifying the texture or chemical composition of the interface at which boiling occurs. The objective of this research is to fabricate textured surfaces with electrical discharge machining (EDM) and investigate the enhancement in pool boiling heat transfer, concerning machining and surface characterization parameters. It is complemented by a qualitative analysis of bubble dynamics with high-speed imaging, to provide insights into the differences in boiling performance associated with the changes in surface topography. Sink electrical discharge machined surfaces demonstrated ten times higher heat transfer coefficient compared to a polished surface during these studies. / Thesis / Master of Applied Science (MASc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/26153 |
Date | January 2019 |
Creators | Dhadda, Gurpyar |
Contributors | Koshy, Philip, Hamed, Mohamed, Mechanical Engineering |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0024 seconds