Dans la fabrication de panneaux de fibres, le pressage à chaud est une étape fondamentale, car elle a une haute influence sur la performance du panneau fini. La modélisation du pressage permet de prédire les principales variables qui ont un effet direct sur le développement du profil de masse volumique selon l’épaisseur pendant le pressage, soit la température, la teneur en humidité et la pression de la vapeur. L’interaction des mécanismes de transfert chaleur- masse ainsi que le changement des conditions internes de l’ébauche de fibres rend souvent leur étude complexe. Établir et bien caractériser les relations entre les propriétés physiques de l’ébauche de fibres pendant le pressage permet d’acroître la précision des prédictions faites par les modèles mathématiques. Ce projet de recherche a été consacré à l’étude des phénomènes de transfert de la chaleur et de la masse dans les ébauches de fibres de bois. Ainsi, la perméabilité au gaz, la conductivité thermique et la porosité ont été déterminées à cinq niveaux de masse volumique pour trois différentes tailles des fibres afin d’évaluer la relation entre ces propriétés et le niveau de densité locale de l’ébauche de fibres durant le pressage. En plus, l’effet de la taille des fibres sur les propriétés déjà mentionnées a été d’ailleurs évalué. La perméabilité au gaz a été déterminée à quatre niveaux de pression d’entrée : 50 kPa, 100 kPa, 150 kPa et 200 kPa sur d’échantillons conditionnés à 65% d’humidité relative et une température de 21°C. Le débit d’air à travers l’épaisseur de l’échantillon a montré de glissement moléculaire. La conductivité thermique a été mesurée par la méthode du steadystate thermal resistance, en utilisant un gradient de 1,6°C mm-1 sur d’échantillons avec une teneur en humidité de 7,6% (s=0,3). La porosité a été calculée par analyse d’image de coupes minces par la méthode du contraste de la couleur noir et blanc. Cette méthode utilise des images obtenues à partir de coupes minces extraites de panneaux de fibres fabriqués sans profil de masse volumique selon l’épaisseur. La perméabilité au gaz, la conductivité thermique et la porosité obtenues dans ce travail de recherche ont été entre 2,16 x10-13 et 5,96 x10-12 m2; 0,05 et 0,15 W m-1 K-1 et 0,44 et 0,93 respectivement, dans un intervalle de masse volumique de 198 kg m-3 et 987 kg m-3. Les résultats indiquent que la masse volumique est, en effet, une variable significative par rapport aux propriétés physiques de l’ébauche étudiées. Une chute importante de la perméabilité au gaz a été observée autour de 598 kg m-3 de masse volumique. Ceci a un impact important lors du pressage à chaud lorsque la densité locale de l’ébauche des fibres est autour de cette valeur. En outre, la taille des fibres est un facteur dominant sur la conduction de la chaleur et la structure poreuse de l’ébauche. Étant donné les résultats actuels, l’impact de la taille des fibres sur la conductivité thermique et la porosité a été significatif. Cependant, la taille des fibres n’a pas eu un effet statistiquement significatif sur la perméabilité au gaz. En conséquence, il n’y a pas eu d’éléments suffisants dans cette étude pour affirmer que la taille des fibres a un impact significatif sur la pression de la vapeur de gaz produite lors du pressage. / In panel manufacturing, the hot-pressing process is a fundamental step because it has a great influence on final product quality. Hot-pressing modeling allows predicting the main variables that it has a direct effect on the development of density profile through the thickness during hot pressing, namely temperature, moisture content and vapour pressure. The study of the heat and mass transfer and mat internal conditions is complex owing to their interaction and changing conditions. Establish and characterize properly the relations between fiber mat physics properties during hot-pressing process it allows to increase the accuracy of predictions made by mathematic model. This research project was conducted in order to study the mass and heat transfer phenomena in fiber mat. Thereby the gas permeability, thermal conductivity and porosity were determined to five density levels and three different fiber sizes in order to evaluate the relationship of these properties and densification level representing the local density though the fiber mat thickness during the hot-pressing process. Furthermore, fiber size effect on these properties already mentioned has been evaluated. Gas permeability was determined to four-inlet pressure: 50 kPa, 100 kPa, 150 kPa et 200 kPa on specimens conditioned to 65% of relative humidity and 21C of temperature. During gas permeability measurements, the air flux though the disk thickness showed slip flow. Thermal conductivity was measured using a gradient of 1,6°C mm-1 on specimens with a moisture content of 7.6% (s=0,3). Mat porosity measurements were performed using the white-black color contrast method. This procedure use images taken from layers impregnated with acrylic resin, which were extracted previously from panels with homogeneous density, profile through the thickness. Gas permeability, thermal conductivity and porosity obtained in this research work were between 5.96 x10-12 and 2.16 x10-13 m2; 0.05 - 0.15 W m-1 K-1 and 0.44 - 0.93 respectively in a range of 198 kg m-3 and 987 kg m-3 of density. The results indicated that the mat density was, in fact, a significate variable in relation to the physical properties of fiber mat considered in this study. Additionally, the fiber size was a dominant factor on heat conduction and porous structure of the fiber mat. Given these results, the fiber size had anoticeable effect on both mat properties thermal conductivity and porosity. Conversely, the fiber sizes studied had no significant effect on gas permeability. Hence, there was not enough evidence to affirm that the fiber size has a significant impact on vapour pressure produced during the hot-pressing process.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/35236 |
Date | 21 June 2019 |
Creators | Rebolledo-Valenzuela, Pamela |
Contributors | Cloutier, Alain, Ngueho Yemele, Martin Claude |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xviii 124 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0035 seconds