Les travaux de cette thèse ont porté sur les micro-bolomètres (détecteurs infrarouges non refroidis) qui fonctionnent selon le principe suivant : le rayonnement infrarouge incident provoque l’échauffement d’une membrane suspendue dont la résistivité électrique dépend de la température. Deux voies ont été explorées pour les améliorer, grâce aux nanotechnologies. D’une part, les propriétés optiques et électroniques (transport et bruit) des films de nanotube de carbone ont été étudiées afin d’évaluer le potentiel de ce nouveau matériau comme thermistor. Pour ce faire des procédés technologiques en salle blanche, des caractérisations et des modèles théoriques ont été mis au point. Après avoir obtenu les figures de mérite adaptées, cette étude a conclu au manque de potentiel de ce matériau pour une application aux micro-bolomètres. D’autre part, nous avons étudié des résonateurs sub-longueur d’onde basés sur des cavités métal-isolant-métal permettant d’obtenir des absorbants totaux, et omnidirectionnels. Un modèle analytique permettant de les décrire et de les concevoir rapidement a été mis au point. La combinaison de ces résonateurs à l’échelle sub-longueur d’onde a permis de mettre en évidence un phénomène de tri de photon et la possibilité de concevoir des absorbants large bande. Nous avons ainsi proposé (et breveté) l’utilisation de ces antennes comme absorbants pour les micro-bolomètres. En effet leur capacité à focaliser le champ dans des volumes sub-longueur d’onde permet d’introduire une rupture conceptuelle pour la conception de bolomètres à hautes performances. / This work was focused on bolometers (uncooled infrared sensors), which are based on the following principle: the incoming infrared radiation is absorbed by a self-standing membrane whose resistivity depends on temperature. In order to improve their design and performances, we explored two solutions based on nanotechnologies. On the one hand, optical and electronic (transport and noise) properties of carbon nanotube films have been investigated in order to evaluate the potential of this new material as a thermistor. Clean room processes, characterization benches and theoretical models have been developed. The obtained figures of merit allow to concluding on the lack of potential for applications in uncooled infrared sensors. On the second hand, subwavelength resonators based on metal-insulator-metal cavities, have been investigated and exhibit perfect, tunable and omni-directional absorption. An analytical model allowing a fast study and design of these resonators has been developed. Photon sorting and wideband absorption have been demonstrated thanks to the combination of these resonators at the sub-wavelength scale. We have thus proposed (and patented) the use of such “antennas” as micro-bolometer’s absorber. Indeed their capacity to focalize the incoming radiation at a subwavelength scale paves the way to the conception of high performance micro-bolometers.
Identifer | oai:union.ndltd.org:theses.fr/2012PA112198 |
Date | 05 October 2012 |
Creators | Koechlin, Charlie |
Contributors | Paris 11, Haïdar, Riad, Pelouard, Jean-Luc |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0019 seconds