Return to search

Previsão de preços de ações no período intradiário por meio de focused time lagged feedforward networks

Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2015-10-21T11:05:40Z
No. of bitstreams: 1
PAULO A. SCHMIDT_.pdf: 1386765 bytes, checksum: f2caadfc119f6eda2a41f0afb9efe1f1 (MD5) / Made available in DSpace on 2015-10-21T11:05:40Z (GMT). No. of bitstreams: 1
PAULO A. SCHMIDT_.pdf: 1386765 bytes, checksum: f2caadfc119f6eda2a41f0afb9efe1f1 (MD5)
Previous issue date: 2015-07-27 / Nenhuma / A previsão de preços de ações é um assunto de grande interesse tanto por parte de agentes de mercado quanto da comunidade científica e acadêmica. Ao mesmo tempo, o problema é considerado como um dos mais desafiadores no tratamento de séries temporais, dada sua natureza altamente dinâmica. Uma ampla gama de estudos propõe-se a abordar o tema. Alguns com resultados bastante promissores fazem uso de Redes Neurais Artificiais (RNAs) do tipo Focused Time Lagged FeedForward Network (FTLFN), as quais apresentam mecanismos de memória capazes de detectar padrões temporais. Em muitos casos, no entanto, as capacidades da rede neural não são devidamente exploradas, limitando-se a testes com um conjunto mínimo de parâmetros. Além disso, a maioria dos estudos de previsões de preços de ações possui como foco
períodos de baixa frequência, como dias ou meses. Contudo, devido à facilidade de acesso à informação nas últimas décadas e à automatização das negociações em bolsas de valores, estas são realizadas cada vez mais sob horizontes de curto prazo, como horas, minutos ou segundos. Existe, portanto, a necessidade de se expandir o conhecimento em relação a previsões dentro deste cenário. Neste sentido, este trabalho tem como objetivo uma investigação das reais potencialidades de previsão das FTLFNs sobre preços de ações no período intradiário. Sua memória de curto prazo e tamanho de camada oculta são explorados de forma ampla e aprofundada, através dos quais se buscou identificar o impacto das diferentes configurações nos resultados de acurácia dentro do contexto considerado. Na tentativa de oferecer suporte a melhores previsões, analisa-se também a influência de indicadores da Análise Técnica sobre o modelo. De forma mais geral, procura-se ampliar o entendimento a respeito tanto das capacidades de previsão das redes do tipo FTLFN como de sua empregabilidade em séries temporais financeiras intradiárias, ainda pouco exploradas na literatura. Os resultados obtidos mostram que, assim como investidores humanos, também as FTLFNs são capazes de se beneficiar enormemente de padrões formados pelos históricos dos sinais de entrada, a fim de prover previsões de maior qualidade dentro do contexto proposto neste trabalho. O mesmo não pode ser afirmado a respeito dos indicadores da Análise Técnica escolhidos, uma vez que em sua grande maioria aumentam os erros de previsão. As evidências apresentadas baseiam-se em experimentações sobre diferentes conjuntos de sinais, oferecendo robustez às conclusões alcançadas e permitindo que a metodologia e os resultados sirvam como base para futuras pesquisas relacionadas a previsões dentro de cenários de alta frequência. / Stock price prediction is a subject of great interest for both market agents and scientific and academic community. At the same time, this problem is considered to be one of the most challenging in time series forecasting, due to its highly dynamic nature. A large amount of researches have proposed to address the issue. Some of them, with very promising results, adopt the Focused Time Lagged FeedForward Network (FTLFN), a type of Artificial Neural Network (ANN) that offers memory mechanisms capable of detecting temporal patterns. In many cases, however, the neural network’s capacities are not properly explored, being limited to tests with a minimum set of parameters. Besides, most of the studies on stock price prediction focus on low-frequency periods, such as days or months. On the other hand, due to the ease of access to information in the last decades and the automation of trades in stock market, these are getting more oftenly executed over short-term horizons, like hours, minutes or seconds. Therefore, there is a need to expand the knowledge related to forecasts in this scenario. With that in mind, this research has the objective of investigating the FTLFN’s potential on stock price forecasting over the intraday period. Its short-term memory and hidden layer size are widely and de eply explored, so the impact of different configurations on the accuracy results could be measured. Also, Technical Analysis indicators are built and utilized as input signals to the network, with their possible contributions to stock prediction being verified. From a general perspective, the work proposes the extention of the understanding regarding the FTLFN’s forecasting capabilities, as well as its use with intraday financial time series, which still require further exploration in literature. The obtained results show that, as human investors do, also FLTFNs are capable of taking enormous advantage from input signals’ history on providing better prediction quality within the proposed context. The same cannot be said for the supporting Technical Analysis indicators chosen, since they mostly increase forecasting errors. Evidences are presented based on the experimentation over several sets, bringing robustness to the conclusions and allowing the methodology and the results to serve as base for future researches related to predictions on high-frequency trading scenarios.

Identiferoai:union.ndltd.org:IBICT/oai:www.repositorio.jesuita.org.br:UNISINOS/4867
Date27 July 2015
CreatorsSchmidt, Paulo André
Contributorshttp://lattes.cnpq.br/4658545839496086, Valiati, Joao Francisco
PublisherUniversidade do Vale do Rio dos Sinos, Programa de Pós-Graduação em Computação Aplicada, Unisinos, Brasil, Escola Politécnica
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UNISINOS, instname:Universidade do Vale do Rio dos Sinos, instacron:UNISINOS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds