L’électrolyse est une technologie qui permet de répondre à deux problématiques cruciales. D’une part, répondre au besoin en stockage d’énergie liée à l’intégration de sources intermittentes sur les réseaux électriques. D’autre part, répondre à la croissance de la demande en hydrogène, liée aux marchés naissants de l’hydrogène énergie. La nature des besoins liés au développement de la technologie d’électrolyse implique des sollicitations intermittentes dont les impacts quant au fonctionnement du système sont encore méconnus. En ce sens, et face aux manques de la littérature quant à la modélisation à l’échelle système de la technologie d’électrolyse PEM, un nouveau modèle est développé. Pour cela, le formalisme de modélisation graphique Bond Graph est utilisé, notamment pour sa capacité à représenter tout type d’échange énergétique de manière unifiée. Le modèle développé permet de représenter l’intégralité d’un système d’électrolyse PEM, ses différents composants et lois de contrôle associées. Il est validé sur la base du comportement dynamique d’une installation semi-industrielle disponible au CEA. Ce modèle est ensuite utilisé pour identifier et comprendre les enjeux liées à une sollicitation intermittente d’un système d’électrolyse PEM d’un point de vue de l’efficacité du système, de sa flexibilité et de sa capacité de suivi de charge, de sa fiabilité, de sa sûreté ou encore de sa durabilité. Différentes modifications de conception sont simulées et évaluées à la lumière de ces différents enjeux. Finalement, le modèle Bond Graph est exploité d’un point de vue de ses propriétés structurelles afin d’analyser les conditions de surveillabilité d’un système d’électrolyse PEM. / PEM Electrolysis is a technology which to enable to face two major challenges : (i) Fulfill the need of energy storage caused by the integration of intermittent energy sources on electricity networks; (ii) Cope with the growing need of carbon free hydrogen caused by the future market applications of hydrogen energy. These particular needs, regarding electrolysis technology development, involve an intermittent operating mode which impacts on the dynamic behavior of the system remain unknown. Modelling is a critical tool to understand these issues and provide a thorough analysis. State of the art of existing modelling works highlighted that only a few models take into account the dynamic of the whole system including Balance of Plant. Therefore a new dynamic and multiphysic model was developed under Bond Graph formalism. This graphical modelling formalism was selected especially thanks to its ability to represent any kind of power exchange in a unified way. The model enables to represent the whole system including balance of plant and associated control laws. It is validated on the dynamic behavior of an experimental device available in CEA. The model is then used in order to identify and understand the issues related to intermittent operation of a PEM electrolysis system. These issues are related to system efficiency, flexibility, reliability, safety and durability. Regarding these issues, some design changes are simulated and assessed. Finally, the Bond Graph model and its structural properties enable to perform diagnosis and monitorability analyses of a PEM electrolysis system.
Identifer | oai:union.ndltd.org:theses.fr/2016LIL10212 |
Date | 14 December 2016 |
Creators | Olivier, Pierre |
Contributors | Lille 1, Ould Bouamama, Belkacem, Bourasseau, Cyril |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0014 seconds