Return to search

Mechanical regulation of bone regeneration and vascular growth in vivo

Regeneration of large bone defects presents a critical challenge to orthopaedic clinicians as the current treatment strategies are severely limited. Tissue engineering has therefore emerged as a promising alternative to bone grafting techniques. This approach features the delivery of bioactive agents such as stem cells, genes, or proteins using biomaterial delivery systems which together stimulate endogenous repair mechanisms to regenerate the tissue. Because bone is a highly mechanosensitive tissue which responds and adapts dynamically to its mechanical environment, application of mechanical stimuli may enhance endogenous tissue repair. While mechanical loading has been shown to stimulate bone fracture healing, the ability of loading to enhance large bone defect regeneration has not been evaluated.
The goal of this thesis was to evaluate the ability of sustained osteogenic growth factor delivery and functional biomechanical loading to stimulate vascularized repair of large bone defects in a rat segmental defect model. First, we evaluated the hypothesis that the relationship between protein dose and regenerative efficacy depends on delivery system. We determined the dose-response relationship between dose of recombinant human bone morphogenetic protein-2 (rhBMP-2) and bone regeneration in a hybrid alginate-based protein delivery system and compared with the current clinically-used collagen sponge. The hybrid delivery system improved bone formation and reduced the effective dose due to its sustained delivery properties in vivo. Next, we tested the hypothesis that transfer of compressive ambulatory loads during segmental defect repair enhances bone formation and subsequent limb regeneration. We found that delayed application of axial loads enhanced bone regeneration by altering bone formation, tissue differentiation and remodeling, and local strain distribution. Finally, we evaluated the hypothesis that in vivo mechanical loading can enhance neovascular growth to influence bone formation. We found that early mechanical loading disrupted neovascular growth, resulting in impaired bone healing, while delayed loading induced vascular remodeling and enhanced bone formation.
Together, this thesis presents the effects of dose and delivery system on BMP-mediated bone regeneration and demonstrates for the first time the effects of in vivo mechanical loading on vascularized regeneration of large bone defects.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/41063
Date03 May 2011
CreatorsBoerckel, Joel David
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0085 seconds