Return to search

Experimental studies on prevention of steroid-associated osteonecrosis with herbal Epimedium-derived bioactive compound Icariin. / CUHK electronic theses & dissertations collection

Steroid-associated osteonecrosis (SAON) accounts for a major fraction in non-traumatic osteonecosis (ON) and generally has poor prognosis even after surgical interventions. This suggests that prevention is one of the important intervention strategies for SAON. So far, there is lacking of proven prevention modalities for SAON. / Study I was to establish an alternative SAON model. Based on the proposed pathogenesis of SAON that the intravascular thrombosis and extravascular marrow fat deposition are the two important contributors to the development of ON lesion, lipopolysaccharides (LPS) could induce vascular dysfunction and even thrombosis, and methylprednisolone (MPS) could induce the adipogenesis of marrow mesenchymal stem cells (MSCs). They were accordingly used in a combination for ON induction in animals. / Study II was to investigate the effect of Herbal Epimedium-derived formula for prevention of ON using the validated SAON animal model. Efficacy of the herbal Epimedium-derived formula was assessed for prevention of SAON using the animal model. Thirty adult male rabbits were used in this study. The ON incidence was set as the end-point for evaluation of the prevention efficay. For the potential intervention targets, the intravascular thrombosis and extravascular marrow fat formation were evaluated hematologically and histopathologically. The vascular structure and function were evaluated by advanced bioimaging modalities of micro-CT and MRI. / Study III was to investigate the bioactive compound(s) from the herbal Epimedium-derived herbal formula for prevention of SAON. Phytochemical analysis identified seven compounds in this efficacy-proven formula, with icariin as the major compound accounting for more than 80% in weight. Icariin was therefore tested for its prevention efficacy using the SAON animal model. / Study IV was to investigate the underlying mechanism(s) of bioactive compound Icariin in effective prevention of SAON using in vitro cell models. As activation of endothelial cells and adipogenesis of MSCs are suggested to be the two major events involving in vascular dysfunction and marrow fat formation in SAON animal model, Icariin were accordingly hypothesized to be able to prevent activation of endothelial cells and inhibit adipogenesis of MSCs. / Summary. After summarizing the major findings of these four logically interrelated studies, it was able to conclude that Icariin was the identified bioactive compound from the herbal Epimedium-derived formula, which was able to reduce the SAON incidence with inhibition of intravascular thrombosis and extravascular marrow fat formation in an established rabbit model. The underlying mechanisms might be related to its effects on protection of endothelial cells activation and inhibition of MSCs adipogenesis (This can be summarized in the following picture). This study provides a new bioactive agent Icariin for SAON prevention and potential future clinical application. (Abstract shortened by UMI.) / The following research questions were addressed in the present study: (1) Is there an alternative SAON animal model? (Study I); (2) Whether the herbal Epimedium-derived formula is able to prevent SAON in this animal model? (Study II); (3) What is the bioactive compound(s) in this herbal Epimedium-derived formula? (Study III); (4) How does this bioactive compound prevent SAON? (Study IV) / Sheng, Hui. / Adviser: Ling Qin. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3421. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_344219
Date January 2008
ContributorsSheng, Hui., Chinese University of Hong Kong Graduate School. Division of Orthopaedics & Traumatology.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, theses
Formatelectronic resource, microform, microfiche, 1 online resource (xxvi, 189 leaves : ill.)
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0086 seconds