<p>A priori limit operator>. maps sequence of a set X into a subset of X.<br />There exists maximal topology on X such that for each sequence x there holds<br />>.(x) C limx. The space obtained in such way is always sequential.<br />If a priori limit operator each sequence x which satisfy lim sup x = lim inf x<br />maps into {lim sup x}, then we obtain the sequential topology Ts. If a priori 'limit<br />operator maps each sequence x into {lim sup x}, we obtain topology denoted by<br />aT. Properties of these topologies, in general, on class of Boolean algebras with<br />condition (Ii) and on class of weakly-distributive b-cc algebras are investigated.<br />Also, the relations between these classes and other classes of Boolean algebras are<br />considered.</p> / <p>A priori limit operator A svakom nizu elemenata skupa X dodeljuje neki<br />podskup skupa X. Tada na skupu X postoji maksimalna topologija takva da za<br />svaki niz x vazi A(X) c lim x. Tako dobijen prostor je uvek sekvencijalan.<br />Ako a priori limit operator svakom nizu x koji zadovoljava uslov lim sup x =<br />liminfx dodeljuje skup {limsupx} onda se, na gore opisan nacin, dobija tzv.<br />sekvencijalna topologija Ts. Ako a priori limit operator svakom nizu x dodeljuje<br />{lim sup x}, dobija se topologija oznacena sa OT. Ispitivane su osobine ovih<br />topologija, generalno, na klasi Bulovih algebri koje zadovoljavaju uslov (Ii) ina<br />klasi slabo-distributivnih i b-cc algebri, kao i odnosi ovih klasa prema drugim<br />klasama Bulovih algebri.</p>
Identifer | oai:union.ndltd.org:uns.ac.rs/oai:CRISUNS:(BISIS)73377 |
Date | 13 January 2009 |
Creators | Pavlović Aleksandar |
Contributors | Kurilić Miloš, Grulović Milan, Pilipović Stevan, Mijajlović Žarko |
Publisher | Univerzitet u Novom Sadu, Prirodno-matematički fakultet u Novom Sadu, University of Novi Sad, Faculty of Sciences at Novi Sad |
Source Sets | University of Novi Sad |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0021 seconds