L'intégration actuelle des systèmes photovoltaïques dans les systèmes d'alimentation conventionnels a montré une croissance importante, ce qui a favorisé l'expansion rapide des micro-réseaux du terme anglais microgrid. Cette intégration a cependant augmenté la complexité du système d'alimentation qui a conduit à de nouveaux défis de recherche. Certains de ces défis de recherche encouragent le développement d'approches de modélisation innovantes en temps réel capables de faire face à cette complexité croissante. Dans ce contexte, une méthodologie innovante est proposée et basée sur les composants pour la modélisation et l'émulation de systèmes photovoltaïques en temps réel integers aux microgrids. L'approche de modélisation proposée peut utiliser le langage de modélisation des systèmes (SysML) pour décrire la structure et le comportement des systèmes photovoltaïques intégrés en tenant compte de leurs caractéristiques multidisciplinaires. De plus, cette étude présente le cadre de spécification de haut niveau des systèmes embarqués (HiLeS) pour transformer les modèles SysML développés en code source destinés à configurer le matériel intégré. Cette caractéristique de la generation automatique de code permet de profiter de dispositifs avec un haut degré d'adaptabilité et de performances de traitement. Cette méthodologie basée sur HiLeS et SysML est axée sur l'étude des systems photovoltaïques partiellement ombragés ainsi que des architectures flexibles en électronique de puissance en raison de leur influence sur les microgrids actuels. En outre, cette perspective de recherche est utilisée pour évaluer les stratégies de contrôle et de supervision dans les conditions normales et de défauts. Ce travail représente la première étape pour développer une approche innovante en temps réel pour modéliser et émuler des systèmes photovoltaïques complexes en tenant compte des propriétés de modularité, de haut degré d'évolutivité et des conditions de travail non uniformes. Les résultats expérimentaux et analytiques valident la méthodologie proposée. / Nowadays, the integration of photovoltaic systems into electrical grids is encouraging the expansion of microgrids. However, this integration has also increased the power system complexity leading to new research challenges. Some of these research challenges require the development of innovative modeling approaches able to deal with this increasing complexity. Therefore, this thesis is intended to contribute with an innovative methodology component-based for modeling and emulating in real-time photovoltaic systems integrated to microgrids. The proposed modeling approach uses the Systems Modeling Language (SysML) to describe the structure and behavior of integrated photovoltaic systems. In addition, this study presents the High Level Specification of Embedded Systems (HiLeS) to transform automatically the developed SysML models in embedded code and Petri nets. These characteristics of automatic code generation and design based on Petri nets allow taking advantage of FPGAs for application of real-time emulation of photovoltaic systems. This dissertation is focused on partially shaded photovoltaic systems and flexible power electronics architectures because of their relevant influence on current microgrids. Furthermore, this research perspective is intended to evaluate control and supervision strategies in normal and fault conditions. This work represents the first step to develop an innovative real-time approach to model and emulate complex photovoltaic systems considering properties of modularity, high degree of scalability, and non-uniform working conditions. Finally, experimental and analytical results validate the proposed methodology.
Identifer | oai:union.ndltd.org:theses.fr/2017TOU30178 |
Date | 06 September 2017 |
Creators | Gutiérrez Galeano, Alonso |
Contributors | Toulouse 3, Alonso, Corinne, Jiménez Vargas, José Fernando |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0874 seconds