Bien que proposant des avantages importants par rapport à d'autres matériaux, les céramiques présentent un défaut récurrent, qui est leur plus ou moins grande fragilité due à des défauts de structure ou à des impuretés dans les réseaux structuraux. On s’affranchit de ces contraintes en améliorant la pureté des matériaux de base, en maîtrisant mieux les processus de fabrication, en les renforçant et en nanostructurant le matériau. C’est ce qui a donné naissance aux méthodes chimiques d’élaboration dites de « Bottom-up » qui reprennent le schéma de principe de la conception de la céramique naturelle en s’adaptant à la démarche des chimistes : des briques élémentaires représentant une architecture moléculaire sont assemblées pour former un composé macromoléculaire dont la composition est contrôlée à l’échelle atomique. Ce composé est mis en forme, durcit pour être transformé par cuisson en une céramique dont la composition est directement liée à la structure moléculaire des briques. Cette démarche est à l’origine de la voie dite des « polymères précéramiques ». Cette voie chimique s’adapte aux exigences des domaines de l’énergie. Notamment et afin d’exploiter et de saisir les opportunités que constituent l’apparition de nouveaux besoins en matériaux et/ou l’établissement de cahiers des charges stricts au regard des propriétés des matériaux dans ce domaine, la présente étude a pour objet d’élaborer des matériaux à base de BN comme les composites à renforts fibreux, les nanocomposites et les mousses.Après une introduction générale, le chapitre 1 décrit l’état de l’art de BN. Il s’intéresse à la littérature sur les propriétés des différentes formes du BN. La voie PDCs est détaillée et son application à l’élaboration du h-BN. Les différents types de précurseurs et de polymères sont décrits et l’accent est mis sur le borazine et le polyborazylène. La dernière partie concerne l’élaboration des composites à renforts fibreux, les nanocomposites et les mousses à base de BN qui sont considérés.Le chapitre 2 s’intéresse à l’élaboration de C/BN composites à partir de polyborazylènes qui est un projet de recherche sur ITER. Après un rappel sur le contexte de CEA, les différentes étapes liées au procédé d’élaboration des composites sont décrites et étudiées à l’aide d’outils de caractérisation comme la RMN solide,TGA, XRD et SEM. Le chapitre 3 s’intéresse à des nanocomposites qui se caractérisent par des phases nanocristallines de nitrure métallique parmi le nitrure de titane, de zirconium et d’hafnium dispersés dans une matrice de BN faiblement cristallisée. L’accent est mis sur la chimie moléculaire et sur la synthèse de polymétalloborazines qui permettent de conduire par pyrolyse à la formation directe de ces nanocomposites par croissance in-situ de la phase nanocristalline dans la matrice BN. Une étude préliminaire sur la possibilité de mettre en forme les polyméres en vue d’élaborer des structures massives nanocomposites est abordée.Le chapitre 4 se consacre à deux procédés de préparation de mousses. Le premier procédé qui combine la voie PDCs à la chimie intégrative vise à élaborer des mousses BN à porosité hiérarchisée. Le second procédé consiste à mélanger PMMA avec polyborazylènes pour subir des étapes de compactage et de pyrolyse générant des mousses. Pour ces deux types de matériaux, des mesures texturales comme BET et la porosimétrie mercure sont entreprises.Une conclusion générale termine le manuscrit. Elle fait un rappel des travaux entrepris dans chacun des trois chapitres et donne des perspectives liées aux trois types de matériau étudiés pendant la thèse. / Energy developments have brought hexagonal boron nitride-based materials increasing interest for future materials and technologies. The objective of this thesis concerns the preparation of BN shapes for energy applications including fiber-reinforced BN composites, BN-based nanocomposites and BN foams. Fiber-reinforced BN composite and BN nanocomposites display potential as tiles for protection limiters for the Ion Cyclotron Range Frequency antennas in fusion nuclear reactors. Porous BN materials have interests as host material for hydrogen storage and as catalyst supports. The Polymer-Derived Ceramics route which offers new preparation opportunities in chemistry and ceramic sciences is applied to manufacture shaped BN-based materials.Firstly, in the context of C/BN composite, polyborazylene vacuum-assisted infiltration and pyrolysis process was successfully introduced. We focused on the design, elaboration and properties of the C/BN composite through the study of the (1) synthesis and polymerization of borazine, (2) the polyborazylene-to-boron nitride conversion, (3) the morphological texture and mechanical properties of derived C/BN composites. We firstly demonstrated that it is possible to obtain dense-derived C/BN composites (density: 1.773 g cm-3, open porosity: 5.09%) by tuning the viscosity of polyborazylene in the infiltration process. SEM observation presented a very strong bonding between fibers and matrix. TGA under air analysis confirmed the improved oxidation resistance property of C/BN composite compared with C fiber.Secondly, we investigated the design, processing, and properties of transition metal-containing boron nitride nanocomposites from polymetalloborazine. With proper choice of boron nitride precursor, and by controlling the B/M ratio (M = Ti, Zr, Hf), a set of representative polymetalloborazines has been prepared as precursors of nanocomposites. In the reaction of BN source with metal precursor leading to polymetalloborazines, two main mechanisms are mainly concerned: N-H and B-H units of BN percursor react with N-alkyl groups presented in metal precursors. After its pyrolysis under ammonia up to 1000 oC then nitrogen from 1000 to 1500oC, the derived nanocomposites reveal the presence of metal nitride nanocrystales with an average diameter of 6.5 nm homogeneously embedded in a poorly crystallized boron nitride matrix. A preliminary study is presented on the preparation of monolith-type nanocomposites from selected polytitanoborazines. Finally, we applied two PDCs route-based strategies to prepare hierarchically porous and micro cellular BN foams. In the first strategy, monolith-type BN foams with a hierarchical porosity were synthesized from polyborazylene using an integrative chemistry combined-based sequence set-up that consists of the impregnation of silica and carbonaceous templates followed by pyrolysis process and elimination of the template. These novel porous BN architectures display hierarchical and high porosity (76 %) with an open-cell interconnected macroporosity and a surface area up to 300 m2g-1. In the second strategy, a sacrificial processing route has been proposed to fabricate micro cellular BN foams with a porosity of 79 % from a mixture of polyborazylene and poly(methylmethacrylate) (PMMA) microbeads by warm-pressing followed by pyrolysis consisting of the burn-out of PMMA while polyborazylene is converted into BN. These novel BN foams display potential as catalyst supports and host material for hydrogen storage.
Identifer | oai:union.ndltd.org:theses.fr/2012MON20186 |
Date | 14 September 2012 |
Creators | Zhong, Wenli |
Contributors | Montpellier 2, Miele, Philippe, Bernard, Samuel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0046 seconds