Adenylate cyclase toxin (CyaA) is a key virulence factor of Bordetella pertussis, the causative agent of whooping cough. The toxin targets primarily myeloid phagocytes expressing CD11b/CD18 (αMβ2, CR3, Mac-1) and by elevation of cytosolic cAMP levels it paralyses their macropinocytic and opsono-phagocytic functions. Here, we dissected the cAMP-regulated pathway responsible for the block of macrophage macropinocytosis and characterized the capacity of CyaA-treated macrophages to shut- down Akt (protein kinase B, PKB) signaling; that controls nitric oxide (NO) production by macrophages. By using specific activators of protein kinase A (PKA) and for the exchange protein activated by cAMP (Epac), we show that activation of the cAMP effector Epac inhibits macropinocytosis in macrophages. Moreover, upon transfection of macrophages by the constitutively active and dominant negative variants of a downstream effector of Epac, the small GTPase Rap1, inhibition or upregulation of macrophage macropinocytosis was observed, respectively. It was reported previously that the Epac/Rap1 pathway regulates activity of tyrosin phosphatase SHP-1 as well as of protein phosphatase 2 A (PP2A). We show that inhibition of both tyrosin phosphatases and PP2A interferes with CyaA-mediated block of macropinocytosis. These...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:284852 |
Date | January 2010 |
Creators | Černý, Ondřej |
Contributors | Kuthan, Martin, Kamanová, Jana |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0022 seconds