Return to search

Porins of Lyme Disease and Relapsing Fever Spirochetes / Porine aus Lyme-Borreliose- und Rückfallfieber- Spirochäten

Die Gattung Borrelia gehört zur Abteilung der Spirochäten, einem alten Zweig der Bakteriendomäne, der nur entfernt mit Gram-negativen Bakterien verwandt ist. Sämtliche Arten dieser Gattung sind obligate Parasiten. Borrelien können in die Erreger zweier humaner Krankheiten eingeteilt werden: die Lyme-Borreliose und das Rückfallfieber. Borrelien besitzen mit 0.91 Mb ein sehr kleines Chromosom und sind daher in ihren metabolischen Fähigkeiten eingeschränkt. Folglich ist das Überleben sämtlicher Borrelienarten absolut abhängig von Nährstoffen, die von ihren Wirten bereitgestellt werden. Der Transport dieser Nährstoffe und anderer Moleküle über die äußere Membran wird durch porenformende Proteine, so genannte Porine ermöglicht. Porine sind wassergefüllte Kanäle, die in zwei Klassen unterteilt werden können: allgemeine Diffusionsporen und substratspezifische Porine. Aus dem Lyme-Borreliose Erreger Borrelia burgdorferi wurden bisher drei mutmaßliche Porine charakterisiert und beschrieben: P13, Oms28 und P66. Demgegenüber sind die Kenntnisse über Porine in Rückfallfieberarten rudimentär und es wurde bisher noch kein einziges Porin für Vertreter dieser Krankheit identifiziert. Unter Berücksichtigung dieses Hintergrunds war die allgemeine Zielsetzung dieser Arbeit, einen Einblick in die Porinzusammensetzung von sowohl Lyme Borreliose- als auch Rückfallfieber-Spirochäten zu erlangen. Dieses Ziel konnte erreicht werden, indem Porine aus den Außenmembranen von Borrelien isoliert und identifiziert wurden und anschließend biophysikalisch in künstlichen Lipidmembranen charakterisiert wurden. Ein Kapitel dieser Arbeit beschreibt die Identifizierung und Charakterisierung des ersten Porins aus Rückfallfiebererregern. Das porenformende Protein wurde aus den Außenmembranen von Borrelia duttonii, Borrelia hermsii und Borrelia recurrentis isoliert und Oms38 genannt, für „outer membrane-spanning protein of 38 kDa“. Die biophysikalische Charakterisierung mit der „black lipid bilayer“ Methode zeigte, dass Oms38 kleine, wassergefüllte Kanäle mit einer Einzelkanalleitfähigkeit von 80 pS in 1 M KCl bildet. Diese Kanäle sind nicht spannungsabhängig und leicht selektiv für Anionen mit einem Permeabilitätsverhältnis von Kationen zu Anionen von 0,41 in KCl. Ein homologes Protein zu Oms38 wurde in den Lyme Borreliose Erregern Borrelia burgdorferi, Borrelia garinii und Borrelia afzelii identifiziert. Das porenformende Protein dieser Arten weist eine hohe Sequenzhomologie zu Oms38 auf und zeigt ähnliche biophysikalische Eigenschaften, das heißt es formt Poren von 50 pS in 1 M KCl. Durch Titrationsexperimente konnte gezeigt werden, dass die Pore teilweise durch Dicarboxylate blockiert werden kann. Eine Auswertung dieser Versuche legte nahe, dass dieses Protein keine allgemeine Diffusionspore darstellt, sondern einen Kanal mit einer spezifischen Bindestelle für diese Komponenten. Daher wurde dieses Porin DipA genannt, was für „dicarboxylate-specific porin A“ steht. In einer anderen Versuchsreihe wurde gezeigt, dass das Porin P66 sowohl in Lyme Borreliose Erregern als auch in Rückfallfieberarten vorhanden ist. Hierfür wurden die Außenmembranen der Lyme Borreliose Erreger Borrelia burgdorferi, Borrelia afzelii und Borrelia garinii und der Rückfallfieberarten Borrelia duttonii, Borrelia recurrentis und Borrelia hermsii genauer untersucht. Mit Ausnahme des P66 Homologs von Borrelia hermsii rekonstituierten P66 Proteine aus allen Arten sehr aktiv in künstliche Membranen und formten Poren zwischen 9 und 11 nS in 1 M KCl. Die biophysikalischen Eigenschaften der Homologe wurden in Experimenten mit „black lipid bilayer“ Membranen ausführlich verglichen. Des Weiteren wurden Porendurchmesser und Konstitution des Borrelia burgdorferi Porins P66 genau untersucht. Hierfür wurde die P66 Einzelkanalleitfähigkeit in Anwesenheit von verschiedenen Nichtelektrolyten in künstlichen Lipidmembranen analysiert. Der effektive Durchmesser des P66 Wasserlumens wurde auf ~1.9 nm bestimmt. Darüber hinaus konnte P66 mit bestimmten Nichtelektrolyten wie PEG 400, PEG 600 und Maltohexaose blockiert werden. Weitere Blockierungsexperimente auf Einzelkanalebene deckten sieben Unterzustände von P66 auf, die auf ein P66 Heptamer schließen ließen. Dieser heptamere Charakter konnte durch Blue native PAGE Analysen bestätigt werden. Zusammenfassend beschreibt diese Dissertation detaillierte biochemische und biophysikalische Untersuchungen von Porinen aus sowohl Lyme Borreliose- als auch Rückfallfieber-Borrelien. Erkenntnisse aus dieser Arbeit bringen das Verstehen der Nährstoffaufnahme über Außenmembranen dieser streng wirtsabhängigen, pathogenen Spirochäten einen großen Schritt vorwärts. Ein fundiertes Wissen über oberflächenexponierte Proteine wie Porine ist Vorraussetzung für die Herstellung erfolgreicher Impfstoffe und Therapeutika gegen die von Borrelien verursachten Krankheiten. / The genus Borrelia belongs to the spirochete phylum, an ancient evolutionary branch of the domain bacteria that is only afar related to Gram-negative bacteria. Borreliae can be subdivided into the agents of the two borrelian-caused human diseases, Lyme disease and relapsing fever. Both disease patterns are closely related to the peculiar biology of Borrelia species and exhibit a wide spectrum of diverse clinical manifestations. Due to the small 0.91 Mb chromosome, borreliae have a lack of biosynthetic capacity. Thus, all Borrelia species are highly dependent on nutrients provided by their hosts. The transport of nutrients and other molecules across the outer membrane is enabled by pore-forming proteins, so-called porins. Porins are water-filled channels and can be subdivided into two different classes, general diffusion pores and substrate-specific porins. In terms of the Lyme disease agent Borrelia burgdorferi, three putative porins were characterized in previous studies: P13, Oms28 and P66. In contrast to Lyme disease species, the porin knowledge of relapsing fever Borrelia is low, which means that not any porin has actually been described for representatives of these agents. Thus, the general aim of this thesis was to provide insight into the porin content of both, Lyme disease and relapsing fever spirochetes. This aim could be achieved by isolating and identifying porins from Borrelia outer membranes and by biophysically characterizing them in artificial lipid membranes. In one chapter of this study, the first identification and characterization of a relapsing fever porin is presented. The pore-forming protein was isolated from outer membranes of Borrelia duttonii, Borrelia hermsii and Borrelia recurrentis and designated Oms38, for “outer membrane-spanning protein of 38 kDa”. Biophysical characterization of Oms38 was achieved by using the black lipid bilayer method and demonstrated that Oms38 forms small, water-filled channels with a single-channel conductance of 80 pS in 1 M KCl. The Oms38 channel did not exhibit voltage-dependent closure and is slightly selective for anions with a permeability ratio of cations over anions of 0.41 in KCl. Subsequently, a protein homologous to Oms38 was identified in the Lyme disease agents Borrelia burgdorferi, Borrelia garinii and Borrelia afzelii. The pore-forming protein of these species exhibits high sequence homology to Oms38 and similar biophysical properties, i.e. it forms pores of 50 pS in 1 M KCl. Interestingly, titration experiments revealed that this pore could be partly blocked by dicarboxylic anions, which means that this protein does not form a general diffusion pore but a channel with a binding-site specific for those compounds. Consequently, this porin was termed DipA, for “dicarboxylate-specific porin A”. In another set of experiments, it was shown that the porin P66 is present in both Lyme disease and relapsing fever species. Therefor, the outer membranes of the Lyme disease species Borrelia burgdorferi, Borrelia afzelii, Borrelia garinii and the relapsing fever species Borrelia duttonii, Borrelia recurrentis and Borrelia hermsii were closer investigated. Except of the P66 homologue of Borrelia hermsii P66 of all species was highly active in artificial lipid membranes, forming pores with huge single-channel conductances between 9 and 11 nS in 1 M KCl. Moreover, the channel diameter and the constitution of Borrelia burgdorferi P66 were investigated in detail. Therefor, the P66 single-channel conductance in the presence of different nonelectrolytes with known hydrodynamic radii was analyzed in black lipid bilayers. The effective diameter of the P66 channel lumen was determined to be ~1.9 nm. Furthermore, as derived from multi-channel experiments the P66-induced membrane conductance could be blocked by certain nonelectrolytes, such as PEG 400, PEG 600 and maltohexaose. Additional blocking experiments on the single-channel level revealed seven subconducting states and indicated a heptameric constitution of the P66 channel. This indication could be confirmed by Blue native PAGE analysis which demonstrated that P66 units form a complex with a corresponding mass of approximately 440 kDa. Taking together, this thesis describes detailed biochemical and biophysical investigations of both Lyme disease and relapsing fever Borrelia porins and represents an important step forward in understanding the outer membrane pathways for nutrient uptake of these strictly host-dependent, pathogenic spirochetes. Furthermore, it provides some knowledge of the outer-membrane protein composition of Borrelia spirochetes. A profound knowledge of surface-exposed proteins, such as porins, is one precondition for the production of a successful vaccine and the drug design against the two borrelian-caused diseases.

Identiferoai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:2837
Date January 2009
CreatorsThein, Marcus
Source SetsUniversity of Würzburg
LanguageEnglish
Detected LanguageEnglish
Typedoctoralthesis, doc-type:doctoralThesis
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0303 seconds