Turbulence in classical fluids has been the subject of scientific study for centuries, yet there is still no complete general theory of classical turbulence connecting microscopic physics to macroscopic fluid flows, and this remains one of the open problems in physics. In contrast, the phenomenon of quantum turbulence in superfluids has well-defined theoretical descriptions, based on first principles and microscopic physics, and represents a realm of physics that can connect the classical and quantum worlds. Studies of quantum turbulence may thus be viewed as a path for progress on the long-standing problem of turbulence.A dilute-gas Bose-Einstein condensate (BEC) is, in most cases, a superfluid that supports quantized vortices, the primary structural elements of quantum turbulence. BECs are particularly convenient systems for the study of vortices, as standard techniques allow the microscopic structure and dynamics of the vortices to be investigated. Vortices in BECs can be created and manipulated using a variety of techniques, hence BECs are potentially powerful systems for the microscopic study of quantum turbulence.This dissertation focuses on quantized vortices in BECs, specifically experimental and numerical studies of their formation, dynamics, and decay, in an effort to understand the microscopic nature of vortices as elements of quantum turbulence. Four main experiments were performed, and are described in the main chapters of this dissertation, after introductions to vortices, experimental methods, and turbulence are presented. These experiments were aimed at understanding various aspects of how vortices are created and behave in a superfluid system. They involved vortex dipole nucleation in the breakdown of superfluidity, persistent current generation from a turbulent state in the presence of energy dissipation, decay of angular momentum of a BEC due to trapping potential impurities, and exploration of the spontaneous formation of vortices during the BEC phase transition. These experiments represent progress towards enhanced understanding of the formation, dynamics, and decay of vortices in BECs and thus may be foundational to more general studies of quantum turbulence in superfluids.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/194178 |
Date | January 2010 |
Creators | Neely, Tyler William |
Contributors | Anderson, Brian P., Anderson, Brian P., Jessen, Poul, Wright, Ewan |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0029 seconds