Return to search

Ultracold rubidium atoms in periodic potentials

This thesis includes both experimental and theoretical investigations, presented in a series of eight papers. The experimental part ranges from the construction procedures of an apparatus for Bose-Einstein condensates, to full scale experiments using three different set-ups for ultracold atoms in optical lattices. As one of the main themes of the thesis, an experimental apparatus for production of Bose-Einstein Condensates is under construction. A magneto-optically trapped sample, hosting more than 200 million 87Rb atoms, have successfully been loaded into a magnetic trap with high transfer rate. The lifetime of the sample in the magnetic trap is in the range of 9 s, and the atoms have been shown to respond to evaporative cooling. The experiment is ready for optimization of the magnetic trap loading, and evaporative cooling parameters, which are the final steps for reaching Bose-Einstein condensation. The set-up is designed to host experiments including variable geometry optical lattices, and includes the possibility to align laser beams with high angular precision for this purpose. The breakdown of Bloch waves in a Bose-Einstein condensate is studied, attributed to the effect of energetic and dynamical instability. This experimental study is performed using a Bose-Einstein condensate in a moving one-dimensional optical lattice at LENS, Florence Italy. The optical lattice parameters, and the thermal distribution of the atomic sample required to trigger the instabilities, are detected, and compared with a theoretical model developed in parallel with the experiments. In close connection with these one-dimensional lattice studies, an experimental survey to characterize regimes of superradiant Rayleigh scattering and Bragg scattering is presented. Tunneling properties of repulsively bound atom pairs in double well potentials are characterized in an experiment at Johannes Gutenberg University, Mainz Germany. A three-dimensional optical lattice, producing an array of double wells with tunable properties is let to interact with a Bose-Einstein condensate. Pairs of ultracold atoms are produced on one side in the double wells, and their tunneling behavior, dependent on potential barrier and repulsion properties, is studied. A theoretical study of the crossover between one- and two-dimensional systems has been performed. The simulations were made for a two-dimensional array of atoms, where the behavior for different tunneling probabilities and atom-atom repulsion strengths was studied. Scaling relations for systems of variable sizes have been examined in detail, and numerical values for the involved variables have been found.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-1821
Date January 2008
CreatorsSaers, Robert
PublisherUmeå universitet, Fysik, Umeå : Fysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds