Return to search

Condições de Contorno mais Gerais no Espalhamento Aharonov-Bohm de uma Partícula de Dirac em Duas Dimensões: Conservação da Helicidade e da Simetria de Aharonov-Bohm / More general boundary conditions in the Aharonov-Bohm scattering of a Dirac particle in two dimensions: helicity conservation and Aharonov-Bohm symmetry

Nessa tese, mostramos que a Hamiltoniana H e o operador helicidade de uma partícula de Dirac que se movimenta em duas dimensões na presença de um tubo de fluxo magnético infinitamente fino na origem admitem, cada um, uma família de quatro parâmetros de extensões auto-adjuntas. Para cada extensão correspondem condições de contorno a serem satisfeitas pelas auto-fuções na origem. Apesar dos operadores H e formalmente comutarem antes da especificação das condições de contorno, para garantirmos a conservação da helicidade, não é suficiente obtermos as mesmas condições de contorno para ambos os operadores, ou seja, não é suficiente a determinação de um domínio comum a ambos. Mostramos que, para certas relações entre os parâmetros das extensões satisfeitas, é possível a determinação dos domínios mais gerais onde ambos os operadores H e são auto-adjuntos e onde a helicidade é conservada, simultaneamente com a preservação da simetria de Aharonov-Bohm ( + 1), onde é o fluxo magnético em unidades naturais. Nossos resultados implicam que, nem a conservação da helicidade nem a simetria de Aharonov-Bohn, resolvem o problema da escolha da condição de contorno fisicamente correta. / We show that both the Hamiltonian H and the helicity operator of a Dirac particle moving in two dimension in the presence of an infinitely thin magnetic flux tube admit each a four- parameter family of self-adjoint extensions. Each extension is in one-to-one correspondence with the boundary conditions (BC\'s) to be satisfied by the eigenfunctions at the origin. Althou- gh the actions af these two operators commute before specification of boundary conditions, to ensure helicity conservation it is not sufficient to take the same BC\'s for both operators. We show that, given certain relations between the parameters of the extensions it is possible to write down the most general domain where both operators H and are self-adjoint with heli- city conservation and also Aharonov-Bohm symmetry ( + 1) preserved, where is the magnetic flux in natural units. The continuity of the dynamics is also obtained. Our results im- ply that neither helicity conservation nor Aharonov-Bohm symmetry by themselves solves the problem of choosing the \"physical \"boundary conditions for this system.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-28112013-105008
Date29 May 2000
CreatorsVanilse da Silva Araujo
ContributorsFrancisco Antonio Bezerra Coutinho, Jose Fernando Perez, Joao Carlos Alves Barata, Amir Ordacgi Caldeira, Henrique Von Dreifus, Marcelo Otavio Caminha Gomes
PublisherUniversidade de São Paulo, Física, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds