Return to search

[en] THE HIBRID BOUNDARY ELEMENT METHOD APPLIED TO TRANSIENT PROBLEMS / [pt] O MÉTODO HÍBRIDO DOS ELEMENTOS DE CONTORNO APLICADO A PROBLEMAS TRANSIENTES

[pt] Mais de três décadas atrás, Przemieniecki introduziu uma
formulação para análise de elementos de barra e treliça
baseada em uma expansão em série de freqüências.
Recentemente esta formulação foi generalizada para análise
de sistemas elásticos submetidos a carregamento qualquer e
deslocamentos iniciais. Baseado no método da superposição
modal, um sistema acoplado, com equações diferenciais de
movimento de alta ordem, é transformado em um sistema
desacoplado com equações diferenciais de segunda ordem, que
pode ser resolvido por qualquer método conhecido na
literatura. A motivação para este desenvolvimento é o
Método Híbrido dos Elementos de Contorno, que tem sido
desenvolvido para problemas dependentes do tempo e
problemas dependentes da freqüência. Esta formulação, assim
como a introduzida por Pian para o Método dos Elementos
Finitos, obtém uma matriz de rigidez utilizando apenas
integrais de contorno, para um domínio de forma qualquer
contendo vários graus de liberdade. O uso de termos com
freqüências de alta ordem melhora muito a precisão
numérica. A análise modal de um problema dinâmico, conforme
se apresenta, é aplicável a qualquer formulação de
elementos finitos, em geral, desde que a matriz de rigidez
generalizada possa ser obtida. Este trabalho é uma
tentativa de consolidação da formulação teórica proposta,
em que se faz uso de integrais exclusivamente no contorno,
com a discussão de diversos casos particulares e a
conseqüente avaliação numérica: estruturas restringidas ou
não; consideração de deslocamentos e velocidades iniciais,
tanto em termos de valores nodais quanto de campos
prescritos no domínio (incluindo deslocamentos de corpo
rígido); deslocamentos forçados dependentes do tempo;
forças de massa dependentes do tempo; cálculo de resultados
em pontos internos. Vários exemplos acadêmicos para
problemas de potencial bidimensionais ilustram este
trabalho. / [en] More than three decades ago, Przemieniecki introduced a
formulation for the free vibration analysis of bar and beam
elements based on a power series of frequencies. Recently,
this formulation was generalized for the analysis of the
dynamic response of elastic systems submitted to arbitrary
nodal loads as well as initial displacements. Based on the
mode-superposition method, a set of coupled, higher-order
differential equations of motion is transformed into a set
of uncoupled second order differential equations, which may
be integrated by means of standard procedures. Motivation
for this theoretical achievement is the hybrid boundary
element method, which has been developed for time-dependent
as well as frequency-dependent problems. This formulation,
as a generalization of Pian`s previous achievements for
finite elements, yields a stiffness matrix for which only
boundary integrals are required, for arbitrary domain
shapes and any number of degrees of freedom. The use of
higher-order frequency terms drastically improves numerical
accuracy. The introduced modal assessment of the dynamic
problem is applicable to any kind of finite element for
which a generalized stiffness matrix is available. The
present work is an attempt of consolidating this boundary-
only theoretical formulation, in which a series of
particular cases are conceptually outlined and numerically
assessed: Constrained and unconstrained structures; initial
displacements and velocities as nodal values as well as
prescribed domain fields (including rigid body movement);
forced time-dependent displacements; time-dependent body
forces; evaluation of results at internal points. Several
academic examples for 2D problems of potential illustrate
the formulation.

Identiferoai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:2494
Date27 March 2002
CreatorsDENILSON RICARDO DE LUCENA NUNES
ContributorsNEY AUGUSTO DUMONT
PublisherMAXWELL
Source SetsPUC Rio
LanguagePortuguese
Detected LanguagePortuguese
TypeTEXTO

Page generated in 0.0021 seconds