Atmospheric boundary layer flows are characterized by the coexistence of a broad range of scales. These scales cover from synoptic- (100-5000 km) and meso-scales (1-100 km) up to three-dimensional micro-scale turbulence (less than a few kilometers). This multiscale nature inherent to atmospheric flows clearly determines the behaviour of the atmospheric boundary layer, whose structure and evolution are of major importance for the wind energy community. This PhD thesis is focused on the development of a numerical methodology that allows to include contribution from all the above mentioned scales, with the purpose of improving the representation of boundary layer processes. The multiscale numerical methodology is developed based on a numerical weather prediction (NWP) model, the Weather Research and Forecasting (WRF) model.<p><p>Prior to the development of the multiscale numerical methodology, one-year of sonic anemometer and wind LiDAR measurements from the FINO1 offshore platform are analyzed. A comprehensive database of offshore measurements in the lowest 250 m of the boundary layer is developed after quality data check and correction for flow distortion effects by the measurement mast, allowing the characterization of the offshore conditions at FINO1. Spectral analysis of high frequency sonic anemometer measurements is used to estimate a robust averaing time for the turbulent fluxes that minimizes non-universal contributions from mesoscale structures but captures the contribution from boundary layer turbulence, employing the Ogive function concept. A stability classification of the measurements is carried out based on the Obukhov length. Results compare well to other surface layer observational studies while vertical wind speed profiles exhibit the expected stability-dependency.<p><p>Although NWP models have been extensively used for weather forecasting purposes, a comprehensive analysis of its suitability to meet the wind energy requirements needs to be carried out. The applicability of the WRF mesoscale model to reproduce offshore boundary layer characteristics is evaluated and validated against field measurements from FINO1. The ability of six planetary boundary layer (PBL) parameterizations to account for stability effects is analyzed. Overall, PBL parameterizations are rather accurate in reproducing the vertical structure of the boundary layer for convective and neutral stabilities. However, difficulties are found under stable stratifications, due to the general tendency of PBL formulations to be overdiffusive and therefore, not capable to develope the strong vertical gradients found in the observations. A low-level jet and a very shallow boundary layer cases are simulated to provide further insights into the limits of the parameterizations.<p><p>Large-eddy simulations (LES) based on averaged conditions from a convective episode at FINO1 are conducted to understand the mechanisms of transition and equilibration that occur in turbulent one-way nested simulations. The nonlinear backscatter and anisotropy subgrid scale model with a prognostic turbulent kinetic energy equation is found to be capable of providing similar results when performing one-way nested large-eddy simulations to a reference stand-alone domain using periodic lateral boundary conditions. A good agreement is obtained in terms of velocity shear and turbulent fluxes of heat and momentum, while velocity variances are overestimated. A considerable streamwise fetch is needed following each domain transition for appropriate energy levels to be reached at high wavelengths and for the solution to reach quasi-stationary results. A pile-up of energy is observed at low wavelengths on the first nested domain, mitigated by the inclusion of a second nested domain with higher resolution that allows the development of an appropriate turbulent energy cascade.<p><p>As the final step towards developing the multiscale capabilities of WRF, the specific problem of the transition from meso- to micro-scales in atmospheric models is addressed. The challenge is to generate turbulence on inner LES domain from smooth mesoscale inflow. Several new methods are proposed to trigger the development of turbulent features. The inclusion of adequate potential temperature perturbations near the inflow boundaries of the LES domain results in a very good agreement of mean velocity profiles, variances and turbulent fluxes, as well as velocity spectra, when compared to periodic stand-alone simulations. This perturbation method allows an efficient generation of fully developed turbulence and is tested under a broad range of atmospheric stabilities: convective, neutral and stable conditions, showing successful results in all the regimes. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
Identifer | oai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/209363 |
Date | 30 September 2013 |
Creators | Munoz Esparza, Domingo |
Contributors | Buchlin, Jean-Marie, Kosovic, Branko, Beeck, Jeroen van, Degrez, Gérard, Aubrun-Sanches, Sandrine, Cañadillas, Beatriz, Stevens, Bjorn, Parente, Alessandro, Rambaud, Patrick |
Publisher | Universite Libre de Bruxelles, Université libre de Bruxelles, Ecole polytechnique de Bruxelles – Electromécanicien, Bruxelles |
Source Sets | Université libre de Bruxelles |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation |
Format | No full-text files |
Page generated in 0.0022 seconds