- ABSTRACT - Noncommutative Choquet theory Let S be a linear subspace of a commutative C∗ -algebra C(X) that se- parates points of C(X) and contains identity. Then the closure of the Choquet boundary of the function system S is the Šilov boundary relati- ve to S. In the case of a noncommutative unital C∗ -algebra A, consider S a self-adjoint linear subspace of A that contains identity and generates A. Let us call S operator system. Then the noncommutative formulation of the stated assertion is that the intersection of all boundary representa- tions for S is the Šilov ideal for S. To that end it is sufficient to show that S has sufficiently many boundary representations. In the present work we make for the proof of that this holds for separable operator system.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:313916 |
Date | January 2011 |
Creators | Šišláková, Jana |
Contributors | Spurný, Jiří, Hamhalter, Jan |
Source Sets | Czech ETDs |
Language | Slovak |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0021 seconds