Return to search

Investigations of rc-loaded bow-tie antennas for impulse ground penetrating radar applications

This thesis reports on the investigations of resistive-capacitive (RC) loaded bow-tie antennas with special emphasis on impulse ground penetrating radar applications. Impulse radiation for ground penetrating radar is a challenging research topic because of the unique problem arising from impulse radiation: late-time ringing, which usually masks the important echo signals from the targets. While resistive loading is a common solution for eliminating late-time ringing, use of resistive loading typically sacrifices the radiation efficiency. In this thesis, a resistive-capacitive loading technique is investigated for a circular bow-tie antenna in the attempt to reduce/suppress the late-time ringing as well as to maintain a relatively high radiation efficiency. To implement the system, a microstrip differentiator, which converts a monopulse into a Gaussian-like monocycle to be used as input impulse, is presented. Further, specially designed coplanar waveguide/coplanar strip (CPW/CPS) baluns embedded with Chebyshev transformers of characteristic impedance up to 120 have been constructed and tested. To evaluate the system, instead of using the conventional peak voltage value of the radiated waveform, average radiated energy, average ringing energy, relative radiation efficiency and relative ringing efficiency are utilized and these metrics are easily established using low-cost low-sensitivity probes. Measurement results show that the RC-loading scheme is functioning as expected and the impulse system as a whole is capable of reducing the late-time ringing energy to 50% while maintaining average radiation energy as 83% when compared with capacitive loading cases. / October 2006

  1. http://hdl.handle.net/1993/286
Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:MWU.anitoba.ca/dspace#1993/286
Date19 September 2006
CreatorsSu, Hong
ContributorsLoVetri, Joe (Electrical and Computer Engineering), Bridges, Greg (Electrical and Computer Engineering) Wang, Gary Gaofeng (Mechnical & Manufacturing Engineering)
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_US
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Format2863792 bytes, application/pdf

Page generated in 0.001 seconds