This thesis describes recording, processing and classifying brain activity which is being captured by a brain-computer interface (BCI) device manufactured by OpenBCI company. Possibility of use of such a device for controlling an application with brain activity, specifically with thinking of left or right hand movement, is discussed. To solve this task methods of signal processing and machine learning are used. As a result a program that is capable of recording, processing and classifying brain activity using an artificial neural network is created. An average accuracy of classification of synthetic data is 99.156%. An average accuracy of classification of real data is 73.71%.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:417221 |
Date | January 2020 |
Creators | Persich, Alexandr |
Contributors | Grézl, František, Szőke, Igor |
Publisher | Vysoké učení technické v Brně. Fakulta informačních technologií |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.002 seconds