Return to search

A new diffusely infiltrating glioma mouse model reveals neuronal alterations in the brain tumor microenvironment

Gliomas are brain tumors that present with neurological symptoms including seizures and cognitive deficits. Starting at early stages of tumor development glioma cells diffusely infiltrate brain tissue where they interact with non-neoplastic cells including neurons and can perturb normal brain function. While the clinical consequences of glioma induced cortical dysfunction are well established, the neuronal alterations that underlie cortical dysfunction in glioma are unknown. We hypothesize that glioma cells infiltrate surrounding brain tissue and induce alterations in neurons that may contribute to the neurological symptoms associated with gliomas. Due to intermingling of glioma cells and neurons it has been challenging to isolate and characterize neurons from glioma brain tissue while preserving complex neuronal morphology. To address this issue we developed a new mouse glioma model that allowed us to obtain a neuron specific gene expression profile, otherwise obscured by the predominantly large population of glioma cells within the tumor. In this thesis I use this model to test the hypothesis that infiltrating glioma cells induce phenotypic alterations in neurons that contribute to the neurological symptoms associated with glioma.
The Camk2a-Ribotag mouse glioma model enabled us to isolate neuron specific transcripts from glioma brain tissue. The Ribotag mouse has a conditional HA-tagged ribosomal protein (Rpl22) that can be expressed upon Cre-recombination. Camk2a is specifically expressed in excitatory neurons, the Camk2a-Cre mouse induces Cre-recombination in the Ribotag mouse so that Camk2a+ neurons selectively express HA-tagged Rpl22. We used the Camk2a-Ribotag glioma model to isolate neuron specific ribosome bound transcripts to characterize neuronal alterations in glioma.
In chapter 2 of this thesis I describe how we developed and characterized the Camk2a-Ribotag mouse glioma model. We first obtained mouse glioma cells that have p53 deletion and overexpress PDGFRa, then we injected these cells in the Camk2a-Ribotag mouse and use this as our glioma model to extract neuron specific ribosome bound transcripts. This method is referred to as translating ribosome affinity purification (TRAP) which is used to obtain cell type specific translational profiles. Using this approach we identified alterations in neuronal gene expression, specifically we show that there is an upregulation of actin binding genes associated with dendritic spine morphology and a downregulation of synaptic genes associated synaptic regulation. We demonstrate that drebrin, an actin binding protein in dendritic spines, is upregulated in tumor brain synaptosomes, we also show a downregulation of dendritic spine density in HA-tagged neurons which suggests that these neuronal alterations contribute to synaptic dysfunction in our glioma model.
Dendritic spines are dynamic structures that regulate synaptic function in response to diverse stimuli. mTOR signaling can regulate brain specific functions such as synaptic plasticity. Alterations in mTOR signaling can result in cognitive deficits, epilepsy and brain abnormalities that are associated with neurological disease. We hypothesized that mTOR regulates the neuronal alterations we identified in our glioma model. In chapter 3 of this thesis I describe how we tested this hypothesis by acutely inhibiting mTOR signaling with the ATP competitive inhibitor AZD8055 in the Camk2a-Ribotag mouse glioma model. Using TRAP we show that acute mTOR inhibition reverses many neuron specific alterations that occurs in the glioma infiltrated cortex, actin binding genes that were upregulated in tumor brains were downregulated after mTOR inhibition and synaptic genes that were downregulated in tumor brains were upregulated after mTOR inhibition. These results suggest that key neuron specific alterations are regulated by mTOR signaling in our glioma model.
In chapter 4 of this thesis I describe how we used ribosome profiling to identify translational alterations in our Camk2a-Ribotag mouse glioma model. Ribosome profiling in an RNA sequencing based method that is used to measure translation efficiency by calculating the number of ribosomes per transcript. Using this approach we identified an upregulation in the translation of DNA methylation and demethylation gene ontologies. These results suggest that alterations in specific DNA methylation and demethylation gene ontologies are regulated at the level of translation and warrant further analysis of cell type specific translational alterations using ribosome profiling.
The work described in this thesis demonstrates 1) use of the Camk2a-Ribotag mouse glioma model for the identification of neuron specific alterations, 2) neuron specific alterations include the upregulation of dendritic spine genes, downregulation of synaptic genes and downregulation of dendritic spine density, 3) acute mTOR inhibition reverses many of these neuronal alterations, 4) ribosome profiling revealed the translational upregulation of epigenetic genes in our mouse glioma model. The findings described in this thesis provide the first characterization of neuron specific transcriptional and translational alterations in glioma infiltrated cortex that and provide new insights into the mechanisms that underlie the devastating neurological symptoms in glioma patients.

Identiferoai:union.ndltd.org:columbia.edu/oai:academiccommons.columbia.edu:10.7916/D8795NJ7
Date January 2018
CreatorsTorres, Daniela
Source SetsColumbia University
LanguageEnglish
Detected LanguageEnglish
TypeTheses

Page generated in 0.0729 seconds