Return to search

Analysis of neural circuits in vitro

Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Brain and Cognitive Sciences, 2010. / Cataloged from PDF version of thesis. / Includes bibliographical references. / This thesis is a collection of manuscripts addressing connectivity of neural circuits in cultured hippocampal neurons. These studies begin with an investigation of dopaminergic modulation of excitatory synapses in small circuits of neurons grown on glial micro islands. We found that dopamine transiently depressed excitatory synaptic transmission. Scaling up to larger circuits of neurons proved more challenging, since finding connected pairs became combinatorially more improbable. The discovery and use of light-activatable ion channel channel rhodopsin-2 (ChR2) promised to revolutionize the way in which we could map connectivity in vitro. We successfully delivered the gene for ChR2 in hippocampal cultures using recombinant adeno-associated virus and characterized the spatial resolution, as well as the reliability of stimulating action potentials. However, there were limitations to this technique that would render circuit maps ambiguous and incomplete. More recently, the engineering of rabies virus (RV) as a neural circuit tracer has produced an exciting method whereby viral infection can be targeted to a population of neurons and spread of the virus restricted to monosynaptically connected neurons. We further investigated potential mechanisms for previous observations which claim that RV spread is restricted to synaptically connected neurons by manipulating neural activity and synaptic vesicle release. We found that RV spread increased for blockade of synaptic vesicle exocytosis and for blockade of neural activity. The underlying premise for pursuing these methods to elucidate connectivity is that the computational power of the brain comes from changeable, malleable connectivity and that to test network models of computation in a biological brain, we must map the connectivity between individual neurons. This thesis builds a framework for experiments designed to bridge the gap between computational learning theories and networks of live neurons. / by Jennifer Lynn Wang. / Ph.D.

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/61878
Date January 2010
CreatorsWang, Jennifer Lynn
ContributorsH. Sebastian Seung., Massachusetts Institute of Technology. Dept. of Brain and Cognitive Sciences., Massachusetts Institute of Technology. Dept. of Brain and Cognitive Sciences.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format61 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0021 seconds