Return to search

Roles of the microRNA pathway in cortical development

Dicer endoribonuclease catalyzes the maturation of microRNAs (miRNAs) from double stranded precursors. Studies conditionally inactivating Dicer in the mouse embryonic forebrain continue to shed light on the spectrum of biological processes subject to miRNA regulation. This study looked at defects of brain development following a widespread ablation of Dicer in the early forebrain. The neuroepithelial stem cells failed to specify the radial glia appropriately around the time when the first postmitotic neurons begin to be generated in the neuroepithelium. Ablation of Dicer in only a subset of radial glia was not accompanied by the early apoptosis observed in all other models of Dicer ablation in the cortex. This allowed the study of the role of miRNAs in regulating cell numbers in the cortex. The study revealed that generation of cortical cells is increased during postnatal development. Finally, the study identified a miRNA which is able to negatively regulate the development of neuronal precursor cells of the developing cortex by targeting Tbox transcription factor 2. Together the results presented in this Thesis contribute to the understanding of the roles of endogenous RNA interference in the development of the brain.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:620846
Date January 2012
CreatorsNowakowski, Tomasz Jan
ContributorsPrice, David; Mason, John; Pratt, Thomas
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/9471

Page generated in 0.0019 seconds