Return to search

Stochastic ship fleet routing with inventory limits

This thesis describes a stochastic ship routing problem with inventory management. The problem involves finding a set of least costs routes for a fleet of ships transporting a single commodity when the demand for the commodity is uncertain. Storage at consumption and supply ports is limited and inventory levels are monitored in the model. Consumer demands are at a constant rate within each time period in the deterministic problem, and in the stochastic problem, the demand rate for a period is not known until the beginning of that period. The demand situation in each time period can be described by a scenario tree with corresponding probabilities. Several possible solution approaches for solving the problem are studied in the thesis. This problem can be formulated as a mixed integer programming (MIP) model. However solving the problem this way is very time consuming even for a deterministic problem with small problem size. In order to solve the stochastic problem, we develop a decomposition formulation and solve it using a Branch and Price framework. A master problem (set partitioning with extra inventory constraints) is built, and the subproblems, one for each ship, involve solving stochastic dynamic programming problems to generate columns for the master problem. Each column corresponds to one possible tree of schedules for one ship giving the schedule for the ship for all demand scenarios. In each branch-and-bound node, the node problem is solved by iterating between the master problem and the subproblems. Dual variables can be obtained solving the master problem and are used in the subproblems to generate the most promising columns for the master problem. Computational results are given showing that medium sized problems can be solved successfully. Several extensions to the original model are developed, including a variable speed model, a diverting model, and a model which allows ships to do extra tasks in return for a bonus. Possible solution approaches for solving the variable speed and the diverting model are presented and computational results are given.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:562956
Date January 2010
CreatorsYu, Yu
ContributorsMckinnon, Ken. : Hall, Julian
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/4640

Page generated in 0.002 seconds