A novel imaging technology, digital breast tomosynthesis (DBT), is a technique that overcomes the tissue superposition limitation of conventional mammography by acquiring a limited number of X-ray projections from a narrow angular range, and combining these projections to reconstruct a pseudo-3D image. The emergence of DBT as a potential replacement or adjunct to mammographic screening mandates that solutions be found to two of its major limitations, namely X-ray scatter and mono-energetic reconstruction methods. A multi-faceted software-based approach to enhance the image quality of DBT imaging has the potential to increase the sensitivity and specificity of breast cancer detection and diagnosis. A scatter correction (SC) algorithm and a spectral reconstruction (SR) algorithm are both ready for implementation and clinical evaluation in a DBT system and exhibit the potential to improve image quality. A principal component analysis (PCA) based model of breast shape and a PCA model of X-ray scatter optimize the SC algorithm for the clinical realm. In addition, a comprehensive dosimetric characterization of a FDA approved DBT system has also been performed, and the feasibility of a new dual-spectrum, single-acquisition DBT imaging technique has also been evaluated.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/52151 |
Date | 27 August 2014 |
Creators | Feng, Si |
Contributors | Sechopoulos, Ioannis |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.0018 seconds