The BRIght Target Explorer (BRITE) constellation is revolutionary in the sense that the same scientific objectives can be achieved smaller (cm3 versus m3 ) and lighter (< 10kg versus 1, 000kg). It is a space astronomy mission, observing the variations in the apparent brightness of stars. The work presented herein focuses on the assembly, integration and test of the instrument used on-board six nanosatellites
that form the constellation. The instrument is composed of an optical telescope equipped with a Charge Coupled Device (CCD) imager and a dedicated computer. This thesis provides a particular in-depth look into the inner workings of CCD. Methods used to characterize the instrument CCD in terms of its bias level stability, gain factor determination, saturation, dark current and readout noise level evaluation are provided. These methodologies are not limited to CCDs and they provide the basis for anyone who
wishes to characterize any type of imager for scientic applications.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/32566 |
Date | 25 July 2012 |
Creators | Cheng, Chun-Ting |
Contributors | Zee, Robert E. |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | en_ca |
Detected Language | English |
Type | Thesis |
Page generated in 0.0019 seconds