Return to search

Experimental Characterization and Modeling of the Brittle and Ductile Failure of Polypropylene and Copolymer Polypropylene

Research areas within the automotive industry are dedicated to reducing the weight and emissions of vehicles. Through the application of lightweight materials, such as polymers, fuel consumption and production costs can be decreased. Therefore, understanding the mechanical responses and failure mechanisms of these materials is significant to the development and design of vehicular structural components. Experimental tests were performed to capture the time, temperature, and stress state dependence, as well as failure mechanisms and large-strain mechanical responses of polypropylene (PP) and copolymer polypropylene (co-PP). Alongside studying the mechanical responses of PP and co-PP, the deformation mechanisms associated with the ductile and brittle failures were also examined. By applying an Internal State Variable (ISV) model, the mechanical behavior of PP and co-PP under various strain rates and temperatures was predicted. Phenomenological, mechanics based failure criteria were also applied to the model to predict the ductile or brittle failure of the materials.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-3137
Date15 December 2012
CreatorsDenton, Brian Edward
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0018 seconds