Return to search

Electronic structure of open-shell transition metal complexes

This thesis presents electronic structure calculations on problems related to the bonding in inorganic coordination compounds and clusters. A wide range of molecules with the ability to exist in different structural forms or electronic states has been selected and density functional theory is systematically applied in order to gain detailed insight into their characteristics and reactivity at the electronic level. First, we address the question of redox non-innocent behaviour of bipyridine in a series of 1st row transition metal complexes. Complexes of the type [M(2,2'-bipyridine)(mes)₂]<sup>0</sup> (M = Cr, Mn, Fe, Co, Ni; mes = 2,4,6-Me₃C6H₂) and their one-electron reduced forms have been explored. The results clearly show that the anions are best described as complexes of the monoanionic bipyridine radical (S<sub>bpy</sub> = 1/2), giving a rationale for the observed structural changes within the ligand. Likewise, we have identified dianionic bipyridine in both the complexes [Zn2(4,4'-bpy)(mes)₄]²<sup>−</sup> and [Fe(2,2'-bpy)₂]²<sup>−</sup>. In no case have we found evidence for significant metal-to-ligand backbonding. The subject of redox-noninnocence is further revisited in a comparative study of the two complexes [M(o-Clpap)₃] (M = Cr, Mo; o-Clpap = 2-[(2-chloro-phenyl)azo]-pyridine), and their associated electron transfer series. The results indicate that all electron transfer processes are primarily ligand-based, although in the case of the Mo analogue these are coupled to substantial electron density changes at the metal. The ability of pap to form radical anions finds a contrasting case in the di- nuclear Rh complex [Rh₂(μ-p-Clpap)₂ (cod)Cl₂], where the two ligand bridges act as acceptors of strong dπ∗ backbonding from a formally Rh<sup>–I</sup> centre. We then direct our attention to the endohedral Zintl clusters [Fe@Ge<sub>10</sub>]³<sup>−</sup> and [Mn@Pb<sub>12</sub>]³<sup>−</sup>, which reveal peculiar topologies. We have probed the electronic factors that influence their geometric preferences, and propose a model based on the shift of electron density from the endo- hedral metal to the cage to account for the observed geometries. Subsequently, we reassess the electronic structure of the xenophilic clusters Mn₂(thf)₄(Fe(CO)₄)₂ and [Mn(Mn(thf)₂)₃(Mn(CO)₄)₃]<sup>–</sup>. We conclude that these are best viewed as exchange coupled Mn<sup>II</sup> centres bridged by closed- shell carbonylate fragments. In the closing chapter the reduction of NO₂<sup>–</sup> to NO by the complex [Cu(tct)(NO₂)]<sup>+</sup> (tct = cis,cis-1,3,5-tris(cinnamylideneamino)cyclohexane) is studied, a process that mimics the enzyme-catalysed reaction. Two viable pathways for the reaction have been traced and key inter-mediates identified. Both direct release of NO or via decomposition of a Cu-NO complex are kinetically and thermodynamically feasible.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:558328
Date January 2011
CreatorsKrämer, Tobias
ContributorsMcGrady, John E.
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:1f4a1330-281d-4696-b3e6-62b76fb41d65

Page generated in 0.0015 seconds