Return to search

Modellierung des Bruchverhaltens austenitischer TRIP-Stähle

Das Promotionsthema war die numerische Untersuchung des Einflusses der mechanisch induzierten martensitischen Phasenumwandlung auf das Bruchverhalten hochlegierter TRIP-Stähle. Die Analyse der Spannungsfelder vor einer abstumpfenden Rissspitze hat ergeben, dass die Phasenumwandlung zu höheren rissöffnenden Spannungen führt. Außerdem wurden charakteristische Spannungsverläufe mit Wendepunkten beobachtet. Für duktiles Versagen wurde ein positiver Einfluss der Phasenumwandlung geschlussfolgert, da die umwandlungsinduzierte Verfestigung das Porenwachstum in der Bruchprozesszone erschwert. Dies wurde an Hand mikromechanischer Simulationen der duktilen Rissausbreitung demonstriert. Im Rahmen der Theorie materieller Kräfte konnte eine abschirmende Wirkung des TRIP-Effekts auf die Rissspitze nachgewiesen werden. Durch Phasenumwandlung wird Arbeit dissipiert, die nicht mehr für Rissfortschritt verfügbar ist. Die energetische Triebkraft für Risswachstum wird demzufolge reduziert. Die Rissausbreitung im TRIP-Stahl wurde mit einer Kohäsivzone modelliert. Die Parameter des Kohäsivzonenmodells charakterisieren den Bruchprozess und konnten unter Verwendung experimenteller Daten identifiziert werden. Um zukünftig die Rolle der Phasenumwandlung bei Ermüdungsrisswachstum untersuchen zu können, wurde ein Materialmodell für TRIP-Stähle unter zyklischer Beanspruchung entwickelt. Die erforderlichen Materialparameter wurden mit Hilfe der Daten aus Wechselverformungsversuchen bestimmt. / This thesis is focused on the numerical investigation of the fracture behavior of high alloy austenitic TRIP-steels and especially on the effect of mechanically induced martensitic phase transformation. The analysis of stress fields in front of a blunting crack tip has shown that phase transformation leads to higher crack opening stresses. Additionally, characteristic courses of the stress components with inflection points were observed. A positive influence of phase transformation on ductile fracture was concluded, because transformation induced hardening retards void growth in the fracture process zone. This was demonstrated by micromechanical simulations of ductile crack extension. In order to investigate the shielding effect of phase transformation on the crack tip, the theory of material forces was applied. Mechanical work is dissipated due to the TRIP-effect, which is no longer available for crack growth. Hence, the energetic driving force for fracture is reduced. Furthermore, crack extension is modeled with a cohesive zone. The parameters of the cohesive zone model, which characterize the fracture process, are identified based on experimental data. In future work the role of phase transformation during fatigue crack growth should by studied. Therefore, a material model for TRIP-steels under cyclic loading was developed. The associated material parameters were estimated based on the results of cyclic deformation experiments.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:35318
Date24 October 2019
CreatorsBurgold, Andreas
ContributorsKuna, Meinhard, Kienzler, Reinhold, TU Bergakademie Freiberg
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess
Relation2418092-0

Page generated in 0.0021 seconds