Return to search

Estimation bayésienne non paramétrique

Dans le cadre d'une analyse par ondelettes, nous nous intéressons à l'étude statistique d'une classe particulière d'espaces de Lorentz : les espaces de Besov faibles qui apparaissent naturellement dans le contexte de la théorie maxiset. Avec des hypothèses de type "bruit blanc gaussien", nous montrons, grâce à des techniques bayésiennes, que les vitesses minimax des espaces de Besov forts ou faibles sont les mêmes. Les distributions les plus défavorables que nous exhibons pour chaque espace de Besov faible sont construites à partir des lois de Pareto et diffèrent en cela de celles des espaces de Besov forts. Grâce aux simulations de ces distributions, nous construisons des représentations visuelles des "ennemis typiques". Enfin, nous exploitons ces distributions pour bâtir une procédure d'estimation minimax, de type "seuillage" appelée ParetoThresh, que nous étudions d'un point de vue pratique. Dans un deuxième temps, nous nous plaçons sous le modèle hétéroscédastique de bruit blanc gaussien et sous l'approche maxiset, nous établissons la sous-optimalité des estimateurs linéaires par rapport aux procédures adaptatives de type "seuillage". Puis, nous nous interrogeons sur la meilleure façon de modéliser le caractère "sparse" d'une suite à travers une approche bayésienne. À cet effet, nous étudions les maxisets des estimateurs bayésiens classiques - médiane, moyenne - associés à une modélisation construite sur des densités à queues lourdes. Les espaces maximaux pour ces estimateurs sont des espaces de Lorentz, et coïncident avec ceux associés aux estimateurs de type "seuillage". Nous prolongeons de manière naturelle ce résultat en obtenant une condition nécessaire et suffisante sur les paramètres du modèle pour que la loi a priori se concentre presque sûrement sur un espace de Lorentz précis.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00002149
Date13 December 2002
CreatorsRivoirard, Vincent
PublisherUniversité Paris-Diderot - Paris VII
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0022 seconds